Page 73 - Rapid Learning in Robotics
P. 73

4.5 Basis Function Sets, Choice and Implementation Aspects                               59






                                                                       if i   i
                                       Q i
                      l i  s A
                                       Q i d i                         else
                              l                                        if i   i
                          
 i          Q i S   i


                           
  s        Q i  S   i d i                  else


                                       Q i  S        S   i
                          
 l i     	         i                        if i   i
                                          h                      i

                          
     s   
 Q i   S   i    S   i  d i   S   i  else

                       using:                                         d i    s   a i


                                    Y                                            Y
                           C i           a i   a j    const           Q i             d j
                                    j   i                                   C i j   i   i



                                      X                                       X
                                                                      S   i
                          S   i
                                    j   i   i   d j                          j   i   i    d j
                                                                                         (4.24)
                     The interim quotients Q i and sums S   i and S   i are efficiently gener-
                 ated by defining the master product Q i (and sums S   i respectively) and


                 working out the specific terms via “synthetic division” and “synthetic sub-
                 traction” for all i    i


                               Q i
                         Q i      ,  S   i   S   i       , and  S   i   S   i            (4.25)
                               d i                 d i                       d i
                 Computing H a  s  and its derivatives is now a matter of collecting the
                 proper pre-computed terms.



                        H a  s       Q m   l i   s A




                      
    a  s    H              l i   s A       if

                                     Q m        
 s
                        
   s                 l i   s A          else


                                                                                         (4.26)

                                                        l i   s A       if



                    
 H a  s                    
 s



                                     Q m      l i   s A          if        and

                    
   s 
   s




                                           
      l i   s A       else
                                                
 s
   68   69   70   71   72   73   74   75   76   77   78