Page 173 - Refining Biomass Residues for Sustainable Energy and Bioproducts
P. 173
A Biorefinery approach towards development of renewable platform chemicals 145
Lee, J.W., Kim, H.U., Choi, S., Yi, J., Lee, S.Y., 2011a. Microbial production of building
block chemicals and polymers. Curr. Opin. Biotechnol. 22, 758 767.
Lee, J.W., Kim, T.Y., Jang, Y.S., Choi, S., Lee, S.Y., 2011b. Systems metabolic engineering
for chemicals and materials. Trends Biotechnol. 29, 370 378.
Li, C., Wang, Q., Zhao, Z.K., 2008. Acid in ionic liquid: an efficient system for hydrolysis
of lignocellulose. Green Chem. 10, 177 182.
Litsanov, B., Kabus, A., Brocker, M., Bott, M., 2012. Efficient aerobic succinate production
from glucose in minimal medium with Corynebacterium glutamicum. Microb.
Biotechnol. 5, 116 128.
Lucia, L.A., Argyropoulos, D.S., Adamopoulos, L., Gaspar, A.R., 2006. Chemicals and
energy from biomass. Can. J. Chem. 84, 960 970.
Mabee, W., Gregg, D., Saddler, J., 2005. Assessing the emerging biorefinery sector in
Canada. Appl. Biochem. Biotechnol. 121 124, 765 778.
Marquardt, W., Harwardt, A., Hechinger, H., Kraemer, K., Viell, J., Voll, A., 2010. The bior-
enewables opportunity—toward next generation process and product systems. AIChE J.
56, 2228 2235.
McLaughlin, M., 2008. Bioproducts: significant stakes for the 21st century. In: The Canadian
Conference on Industrial Bioproduct Innovation. November 5 6, 2008, Montreal.
´
Mika, L.T., Cse ´falvay, E., Ne ´meth, A., 2018. Catalytic conversion of carbohydrates to initial
platform chemicals: chemistry and sustainability. Chem. Rev. 118, 505 613.
Mimitsuka, T., Sawai, H., Hatsu, M., Yamada, K., 2007. Metabolic engineering of
Corynebacterium glutamicum for cadaverine fermentation. Biosci. Biotechnol. Biochem.
71, 2130 2135.
Moulijn, J.A., Stankiewicz, A., Grievink, J., Gorak, A., 2008. Process intensification and pro-
cess systems engineering: a friendly symbiosis. Comput. Chem. Eng. 32, 3 11.
Mullin, R., 2004. Sustainable specialties. Chem. Eng. News 82, 29 37.
Munoz, L.E.A., Riley, M.R., 2008. Utilization of cellulosic waste from tequila bagasse and
production of polyhydroxyalkanoate (PHA) bioplastics by Saccharophagus degradans.
Biotechnol. Bioeng. 100, 882 888.
Murakami, M., Kaneko, Y., Kadokawa, J., 2007. Preparation of cellulose-polymerized ionic
liquid composite by in-situ polymerization of polymerizable ionic liquid in cellulose-
dissolving solution. Carbohydr. Polym. 69, 378 381.
Nakamura, C.E., Whited, G.M., 2003. Metabolic engineering for the microbial production of
1,3-propanediol. Curr. Opin. Biotechnol. 14, 454 459.
Nguyen, T.T.H., Kikuchi, Y., Noda, M., Hirao, M., 2015. A new approach for the design and
assessment of bio-based chemical processes toward sustainability. Ind. Eng. Chem. Res.
54, 5494 5504.
Octave, S., Thomas, D., 2009. Biorefinery: toward an industrial metabolism. Biochimie 91,
659 664.
Pagliaro, M., Rossi, M., 2008. The Future of Glycerol: New Uses of a Versatile Raw
Material. Royal Society of Chemistry, Cambridge.
Palsson, B.O., Fathi-Afschar, S., Rudd, D.F., Lightfoot, E.N., 1981. Science 213, 513.
Plutschack, M.B., Pieber, B., Gilmore, K., Seeberger, P.H., 2017. The hitchhiker’s guide to
flow chemistry. Chem. Rev. 117, 11796 11893.
Reimann, A., Biebl, H., Deckwer, W.D., 1998. Production of 1,3-propanediol by Clostridium
butyricum in continuous culture with cell recycling. Appl. Microbiol. Biotechnol. 49,
359 363.
Ros, J., et al., 2012. PBL note. Sustainability of biomass in a bio-based economy. A quick-
scan analysis of the biomass demand of a bio-based economy in 2030 compared to the