Page 174 - Refining Biomass Residues for Sustainable Energy and Bioproducts
P. 174

146                     Refining Biomass Residues for Sustainable Energy and Bioproducts


             sustainable supply. In: PBL Netherlands Environmental Assessment Agency Publication
             Number: 500143001.
         Sacramento-Rivero, J.C., 2012. A methodology for evaluating the sustainability of biorefi-
             neries: framework and indicators. Biofuels, Bioprod. Biorefin. 6, 32 44.
         Sanders, J.P.M., Scott, E.L., Weusthuis, R.A., Mooibroek, H., 2007. Bio-refinery as the bio-
             inspired process to bulk chemicals. Macromol. Biosci. 7, 105 117.
         Sauer, M., Porro, D., Mattanovich, D., Branduardi, P., 2008. Microibial production of organic
             acids: expanding the market. Trends Biotechnol. (26), 100 108.
         Sillanp¨ a¨ a, M., Ncibi, C., 2017. A Sustainable Bioeconomy: The Green Industrial Revolution.
             Springer, Cham. Available from: http://dx.doi.org/10.1007/978-3-319-55637-6.
         Stankiewicz, A., Moulijn, J.A., 2000. Process intensification: transforming chemical engi-
             neering. Chem. Eng. Proc. 96, 22 34.
         Sun, Z., Ramsay, J.A., Guay, M., Ramsay, B.A., 2007. Fermentation process development
             for the production of medium-chain-length poly-3-hyroxyalkanoates. Appl. Microbiol.
             Biotechnol. 75, 475 485.
         Suriyamongkol, P., Weselake, R., Narine, S., Moloney, M., Shah, S., 2007. Biotechnological
             approaches for the production of polyhydroxyalkanoates in microorganisms and plants
             —a review. Biotechnol. Adv. 25, 148 175.
         Tan, Y., Liao, J.C., 2012. Metabolic ensemble modeling for strain engineers. Biotechnol. J.
             7, 343 353.
         Thomas, S.M., DiCosimo, R., Nagarajan, V., 2002. Biocatalysis: applications and potentials
             for the chemical industry. Trends Biotechnol. 20, 238 242.
         US Department of Agriculture, 2008. US Biobased Products Market Potential and
             Projections Through 2025, OCE-2008-01. USDA.
         Van Gerven, T., Stankiewicz, A., 2009. Structure, energy, time—the fundamentals of process
             intensification. Ind. Eng. Chem. Res. 48, 2465 2474.
         Van Haveren, J., Scott, E.L., Sanders, J., 2007. Bulk chemicals from biomass. Biofuels,
             Bioprod. Biorefin. 2, 41.
         Vennestrøm, P.N.R., Osmundsen, C.M., Christensen, C.H., Taarning, Esben, 2011. Beyond
             petrochemicals: the renewable chemicals industry, Angew. Chem. Int. Ed., 50.
             pp. 10502 10509.
         Wang, L., Zhao, B., Li, F., Xu, K., Ma, C., Tao, F., et al., 2011. Highly efficient production
             of D-lactate by Sporolactobacillus sp. CASD with simultaneous enzymatic hydrolysis of
             peanut meal. Appl. Microbiol. Biotechnol. 89, 1009 1017.
         Weissermel, K., Harpe, H.J., 2003. Industrial Organic Chemistry, fourth ed. Wiley-VCH
             Verlag, Weinheim, Germany, pp. 291 294.
         Wittlich, P., Schlieker, M., Willke, T., Vorlop, K.D., 2000. In: Vorlop, K.-D., Warwel, S.,
             Puls,  J.,  Kru ¨ger,  A.  (Eds.),  Bioconversion  Nachwachsender  Rohstoffe.
             Landwirtschaftsverlag, Mu ¨nster, Germany.
         Wittmann, C., 2010. Analysis and engineering of metabolic pathway fluxes in
             Corynebacterium glutamicum. Adv. Biochem. Eng. Biotechnol. 120, 21 49.
         Xu, X., Lin, J., Cen, P., 2006. Advances in the research and development of acrylic acid pro-
             duction from biomass. Chin. J. Chem. Eng. 14, 419 427.
         Zhang, Z., Huber, G.W., 2018. Catalytic oxidation of carbohydrates into organic acids and
             furan chemicals. Chem. Soc. Rev. 47, 1351 1390.
         Zhang, Y., Du, H., Qian, X., Chen, E.Y.X., 2010. Ionic liquid water mixtures: enhanced Kw
             for efficient cellulosic biomass conversion. Energy Fuels 4, 2410 2417.
         Zhao, H., Holladay, J.E., Brown, H., Zhang, Z.C., 2007. Metal chlorides in ionic liquid sol-
             vents convert sugars to 5-hydroxymethylfurfural. Science 316, 1597 1600.
   169   170   171   172   173   174   175   176   177   178   179