Page 205 - Refining Biomass Residues for Sustainable Energy and Bioproducts
P. 205
174 Refining Biomass Residues for Sustainable Energy and Bioproducts
The development of the technologies and the advances in the area of algal bio-
fuels will grow parallel to the public interest on sustainable sources of clean energy
and public concern on climate change and environmental remediation.
References
Abeliovich, A., 2004. Water pollution and bioremediation by microalgae. In: Richmond, A.
(Ed.), Handbook of Microalgal Culture Biotechnology and Applied Phycology, vol. 1.
Blackwell Science, Oxford, p. 588.
Abeliovich, A., Azov, Y., 1976. Toxicity of ammonia to algae in sewage oxidation ponds.
Appl. Environ. Microbiol. 31 (6), 801 806.
AlMomani, F.A., Ormeci, B., 2016. Performance of Chlorella vulgaris, Neochloris oleoabun-
dans, and mixed indigenous microalgae for treatment of primary effluent, secondary
effluent and centrate. Ecol. Eng. 95, 280 289.
Arora, N., Patel, A., Sartaj, K., Pruthi, P.A., Pruthi, V., 2016. Bioremediation of domestic
and industrial wastewaters integrated with enhanced biodiesel production using novel
oleaginous microalgae. Environ. Sci. Pollut. Res. Int. 23 (20), 20997 21007.
Assemany, P., Marques, I.D., Calijuri, M.L., da Silva, T.L., Reis, A., 2018. Energetic valori-
zation of algal biomass in a hybrid anaerobic reactor. J. Environ. Manage. 209,
308 315.
Badvipour, S., Eustance, E., Sommerfeld, M.R., 2016. Process evaluation of energy require-
ments for feed production using dairy wastewater for algal cultivation: theoretical
approach. Algal Res. 19, 207 214.
Becker, E.W., 2007. Micro-algae as a source of protein. Biotechnol. Adv. 25 (2), 207 210.
Blank, C.E., Parks, R.W., Hinman, N.W., 2016. Chitin: a potential new alternative nitrogen
source for the tertiary, algal-based treatment of pulp and paper mill wastewater. J. Appl.
Phycol. 28 (5), 2753 2766.
Calixto, C.D., Santana, J.K.D., de Lira, E.B., Sassi, P.G.P., Rosenhaim, R., Sassi, C.F.D.,
et al., 2016. Biochemical compositions and fatty acid profiles in four species of microal-
gae cultivated on household sewage and agro-industrial residues. Bioresour. Technol.
221, 438 446.
Caporgno, M.P., Taleb, A., Olkiewicz, M., Font, J., Pruvost, J., Legrand, J., et al., 2015.
Microalgae cultivation in urban wastewater: nutrient removal and biomass production
for biodiesel and methane. Algal Res. 10, 232 239.
Chang, Z., Duan, P., Xu, Y., 2015. Catalytic hydropyrolysis of microalgae: influence of oper-
ating variables on the formation and composition of bio-oil. Bioresour. Technol. 184,
349 354.
Cheah, W.Y., Ling, T.C., Show, P.L., Juan, J.C., Chang, J.S., Lee, D.J., 2016. Cultivation in
wastewaters for energy: a microalgae platform. Appl. Energy 179, 609 625.
Cheng, P., Ji, B., Gao, L., Zhang, W., Wang, J., Liu, T., 2013. The growth, lipid and hydro-
carbon production of Botryococcus braunii with attached cultivation. Bioresour.
Technol. 138, 95 100.
Cheng, J., Huang, R., Li, T., Zhou, J., Cen, K., 2014. Biodiesel from wet microalgae: extrac-
tion with hexane after the microwave-assisted transesterification of lipids. Bioresour.
Technol. 170, 69 75.
Clark, R.L., McGinley, L.L., Purdy, H.M., Korosh, T.C., Reed, J.L., Root, T.W., et al., 2018.
Light-optimized growth of cyanobacterial cultures: growth phases and productivity of