Page 205 - Refining Biomass Residues for Sustainable Energy and Bioproducts
P. 205

174                     Refining Biomass Residues for Sustainable Energy and Bioproducts


           The development of the technologies and the advances in the area of algal bio-
         fuels will grow parallel to the public interest on sustainable sources of clean energy
         and public concern on climate change and environmental remediation.


         References


         Abeliovich, A., 2004. Water pollution and bioremediation by microalgae. In: Richmond, A.
             (Ed.), Handbook of Microalgal Culture Biotechnology and Applied Phycology, vol. 1.
             Blackwell Science, Oxford, p. 588.
         Abeliovich, A., Azov, Y., 1976. Toxicity of ammonia to algae in sewage oxidation ponds.
             Appl. Environ. Microbiol. 31 (6), 801 806.
         AlMomani, F.A., Ormeci, B., 2016. Performance of Chlorella vulgaris, Neochloris oleoabun-
             dans, and mixed indigenous microalgae for treatment of primary effluent, secondary
             effluent and centrate. Ecol. Eng. 95, 280 289.
         Arora, N., Patel, A., Sartaj, K., Pruthi, P.A., Pruthi, V., 2016. Bioremediation of domestic
             and industrial wastewaters integrated with enhanced biodiesel production using novel
             oleaginous microalgae. Environ. Sci. Pollut. Res. Int. 23 (20), 20997 21007.
         Assemany, P., Marques, I.D., Calijuri, M.L., da Silva, T.L., Reis, A., 2018. Energetic valori-
             zation of algal biomass in a hybrid anaerobic reactor. J. Environ. Manage. 209,
             308 315.
         Badvipour, S., Eustance, E., Sommerfeld, M.R., 2016. Process evaluation of energy require-
             ments for feed production using dairy wastewater for algal cultivation: theoretical
             approach. Algal Res. 19, 207 214.
         Becker, E.W., 2007. Micro-algae as a source of protein. Biotechnol. Adv. 25 (2), 207 210.
         Blank, C.E., Parks, R.W., Hinman, N.W., 2016. Chitin: a potential new alternative nitrogen
             source for the tertiary, algal-based treatment of pulp and paper mill wastewater. J. Appl.
             Phycol. 28 (5), 2753 2766.
         Calixto, C.D., Santana, J.K.D., de Lira, E.B., Sassi, P.G.P., Rosenhaim, R., Sassi, C.F.D.,
             et al., 2016. Biochemical compositions and fatty acid profiles in four species of microal-
             gae cultivated on household sewage and agro-industrial residues. Bioresour. Technol.
             221, 438 446.
         Caporgno, M.P., Taleb, A., Olkiewicz, M., Font, J., Pruvost, J., Legrand, J., et al., 2015.
             Microalgae cultivation in urban wastewater: nutrient removal and biomass production
             for biodiesel and methane. Algal Res. 10, 232 239.
         Chang, Z., Duan, P., Xu, Y., 2015. Catalytic hydropyrolysis of microalgae: influence of oper-
             ating variables on the formation and composition of bio-oil. Bioresour. Technol. 184,
             349 354.
         Cheah, W.Y., Ling, T.C., Show, P.L., Juan, J.C., Chang, J.S., Lee, D.J., 2016. Cultivation in
             wastewaters for energy: a microalgae platform. Appl. Energy 179, 609 625.
         Cheng, P., Ji, B., Gao, L., Zhang, W., Wang, J., Liu, T., 2013. The growth, lipid and hydro-
             carbon production of Botryococcus braunii with attached cultivation. Bioresour.
             Technol. 138, 95 100.
         Cheng, J., Huang, R., Li, T., Zhou, J., Cen, K., 2014. Biodiesel from wet microalgae: extrac-
             tion with hexane after the microwave-assisted transesterification of lipids. Bioresour.
             Technol. 170, 69 75.
         Clark, R.L., McGinley, L.L., Purdy, H.M., Korosh, T.C., Reed, J.L., Root, T.W., et al., 2018.
             Light-optimized growth of cyanobacterial cultures: growth phases and productivity of
   200   201   202   203   204   205   206   207   208   209   210