Page 207 - Refining Biomass Residues for Sustainable Energy and Bioproducts
P. 207
176 Refining Biomass Residues for Sustainable Energy and Bioproducts
Halim, F.T.A., Guo, X.Y., Su, G.M., Ngee, H.L., Zeng, X.H., He, N., et al., 2016.
Sustainable microalgae-based palm oil mill effluent treatment process with simultaneous
biomass production. Can. J. Chem. Eng. 94 (10), 1848 1854.
Harris, D.C., 2017. Quatitative Chemical Analysis. Langara College, Vancouver, B.C.
Harun, R., Singh, M., Forde, G.M., Danquah, M.K., 2010. Bioprocess engineering of micro-
algae to produce a variety of consumer products. Renew. Sustain. Energy Rev. 14 (3),
1037 1047.
He, P.J., Mao, B., Shen, C.M., Shao, L.M., Lee, D.J., Chang, J.S., 2013. Cultivation of
Chlorella vulgaris on wastewater containing high levels of ammonia for biodiesel pro-
duction. Bioresour. Technol. 129, 177 181.
Hena, S., Fatimah, S., Tabassum, S., 2015. Cultivation of algae consortium in a dairy farm
wastewater for biodiesel production. Water Res. Ind. 10, 1 14.
Herna ´ndez, D., Rian ˜o, B., Coca, M., Garcı ´a-Gonza ´lez, M.C., 2013. Treatment of agro-
industrial wastewater using microalgae bacteria consortium combined with anaerobic
digestion of the produced biomass. Bioresour. Technol. 135 (0), 598 603.
Hietala, D.C., Faeth, J.L., Savage, P.E., 2016. A quantitative kinetic model for the fast and
isothermal hydrothermal liquefaction of Nannochloropsis sp. Bioresour. Technol. 214,
102 111.
Ho, S.H., Chang, J.S., Lai, Y.Y., Chen, C.N., 2014a. Achieving high lipid productivity of a
thermotolerant microalga Desmodesmus sp. F2 by optimizing environmental factors and
nutrient conditions. Bioresour. Technol. 156, 108 116.
Ho, S.H., Chen, C.N., Lai, Y.Y., Lu, W.B., Chang, J.S., 2014b. Exploring the high lipid pro-
duction potential of a thermotolerant microalga using statistical optimization and semi-
continuous cultivation. Bioresour. Technol. 163, 128 135.
Hulsen, T., Hsieh, K., Lu, Y., Tait, S., Batstone, D.J., 2018. Simultaneous treatment and sin-
gle cell protein production from agri-industrial wastewaters using purple phototrophic
bacteria or microalgae—a comparison. Bioresour. Technol. 254, 214 223.
Jebali, A., Acien, F.G., Sayadi, S., Molina-Grima, E., 2018. Utilization of centrate from
urban wastewater plants for the production of Scenedesmus sp. in a raceway-simulating
reactor. J. Environ. Manage. 211, 112 124.
Ji, F., Liu, Y., Hao, R., Li, G., Zhou, Y., Dong, R., 2014a. Biomass production and nutrients
removal by a new microalgae strain Desmodesmus sp. in anaerobic digestion wastewa-
ter. Bioresour. Technol. 161, 200 207.
Ji, M.K., Kabra, A.N., Salama El, S., Roh, H.S., Kim, J.R., Lee, D.S., et al., 2014b. Effect of
mine wastewater on nutrient removal and lipid production by a green microalga
Micratinium reisseri from concentrated municipal wastewater. Bioresour. Technol. 157,
84 90.
Kallqvist, T., Svenson, A., 2003. Assessment of ammonia toxicity in tests with the microalga,
Nephroselmis pyriformis, Chlorophyta. Water Res. 37 (3), 477 484.
Klassen, V., Blifernez-Klassen, O., Wobbe, L., Schluter, A., Kruse, O., Mussgnug, J.H.,
2016. Efficiency and biotechnological aspects of biogas production from microalgal sub-
strates. J. Biotechnol. 234, 7 26.
Knothe, G., 2009. Improving biodiesel fuel properties by modifying fatty ester composition.
Energy Environ. Sci. 2 (7), 759.
Koncagul, E., Tran, M., Connor, R., Uhlenbrook, S., Cordeiro Ortigara, A.R., 2017. The
United Nations World Water Development Report 2017. UNESCO.
Kouhia, M., Holmberg, H., Ahtila, P., 2015. Microalgae-utilizing biorefinery concept for
pulp and paper industry: converting secondary streams into value-added products. Algal
Res. 10 (0), 41 47.