Page 208 - Refining Biomass Residues for Sustainable Energy and Bioproducts
P. 208
Biorefinery of microalgae biomass cultivated in wastewaters 177
Koukal, B., Gueguen, C., Pardos, M., Dominik, J., 2003. Influence of humic substances on
the toxic effects of cadmium and zinc to the green alga Pseudokirchneriella subcapitata.
Chemosphere 53 (8), 953 961.
Koutra, E., Grammatikopoulos, G., Kornaros, M., 2018. Selection of microalgae intended for
valorization of digestate from agro-waste mixtures. Waste Manage. 73, 123 129.
Kovacik, J., Klejdus, B., Babula, P., Hedbavny, J., 2016. Age affects not only metabolome
but also metal toxicity in Scenedesmus quadricauda cultures. J. Hazard. Mater. 306,
58 66.
Kovacik, J., Rotkova, G., Bujdos, M., Babula, P., Peterkova, V., Matus, P., 2017. Ascorbic
acid protects Coccomyxa subellipsoidea against metal toxicity through modulation of
ROS/NO balance and metal uptake. J. Hazard. Mater. 339, 200 207.
Kovacik, J., Bujdos, M., Babula, P., 2018. Impact of humic acid on the accumulation of
metals by microalgae. Environ. Sci. Pollut. Res. Int. 25 (11), 10792 10798.
Kumar, V., Muthuraj, M., Palabhanvi, B., Ghoshal, A.K., Das, D., 2014. High cell density
lipid rich cultivation of a novel microalgal isolate Chlorella sorokiniana FC6 IITG in a
single-stage fed-batch mode under mixotrophic condition. Bioresour. Technol. 170,
115 124.
Kumar, K.S., Dahms, H.U., Won, E.J., Lee, J.S., Shin, K.H., 2015. Microalgae—a promising
tool for heavy metal remediation. Ecotoxicol. Environ. Safety 113, 329 352.
Lekshmi, B., Joseph, R.S., Jose, A., Abinandan, S., Shanthakumar, S., 2015. Studies on
reduction of inorganic pollutants from wastewater by Chlorella pyrenoidosa and
Scenedesmus abundans. Alexandria Eng. J. 54 (4), 1291 1296.
Lin, L., Chan, G.Y.S., Jiang, B.L., Lan, C.Y., 2007. Use of ammoniacal nitrogen tolerant
microalgae in landfill leachate treatment. Waste Manage. 27 (10), 1376 1382.
Liu, T., Wang, J., Hu, Q., Cheng, P., Ji, B., Liu, J., et al., 2013. Attached cultivation technol-
ogy of microalgae for efficient biomass feedstock production. Bioresour. Technol. 127,
216 222.
Lizzul, A.M., Hellier, P., Purton, S., Baganz, F., Ladommatos, N., Campos, L., 2014.
Combined remediation and lipid production using Chlorella sorokiniana grown on
wastewater and exhaust gases. Bioresour. Technol. 151, 12 18.
Lohrey, C., Kochergin, V., 2012. Biodiesel production from microalgae: co-location with
sugar mills. Bioresour. Technol. 108 (0), 76 82.
Lo ´pez Barreiro, D., Bauer, M., Hornung, U., Posten, C., Kruse, A., Prins, W., 2015.
Cultivation of microalgae with recovered nutrients after hydrothermal liquefaction.
Algal Res. 9 (0), 99 106.
Lu, Q., Chen, P., Addy, M., Zhang, R., Deng, X., Ma, Y., et al., 2018. Carbon-dependent
alleviation of ammonia toxicity for algae cultivation and associated mechanisms explo-
ration. Bioresour. Technol. 249, 99 107.
Ma, Y., Wang, Z., Yu, C., Yin, Y., Zhou, G., 2014. Evaluation of the potential of 9
Nannochloropsis strains for biodiesel production. Bioresour. Technol. 167, 503 509.
Mahapatra, D.M., Chanakya, H.N., Ramachandra, T.V., 2014. Bioremediation and lipid syn-
thesis through mixotrophic algal consortia in municipal wastewater. Bioresour. Technol.
168, 142 150.
Mayfield, S., 2015. CAB-Comm Public Final Report. University of California, San Diego,
CA.
Maza-Marquez, P., Gonzalez-Martinez, A., Martinez-Toledo, M.V., Fenice, M., Lasserrot,
A., Gonzalez-Lopez, J., 2017. Biotreatment of industrial olive washing water by syner-
getic association of microalgal-bacterial consortia in a photobioreactor. Environ. Sci.
Pollut. Res. Int. 24 (1), 527 538.