Page 206 - Refining Biomass Residues for Sustainable Energy and Bioproducts
P. 206
Biorefinery of microalgae biomass cultivated in wastewaters 175
biomass and secreted molecules in light-limited batch growth. Metab. Eng. 47,
230 242.
Costa, J.A.V., de Morais, M.G., 2014. Chapter 1—An open pond system for microalgal cultiva-
tion. In: Soccol, A.P.-J.L.C.R. (Ed.), Biofuels From Algae. Elsevier, Amsterdam, pp. 1 22.
de Farias Silva, C.E., Bertucco, A., 2016. Bioethanol from microalgae and cyanobacteria: a
review and technological outlook. Process Biochem. 51 (11), 1833 1842.
Dong, B., Ho, N., Ogden, K.L., Arnold, R.G., 2014. Cultivation of Nannochloropsis salina in
municipal wastewater or digester centrate. Ecotoxicol. Environ. Safety 103 (0), 45 53.
Ebrahimian, A., Kariminia, H.-R., Vosoughi, M., 2014. Lipid production in mixotrophic cul-
tivation of Chlorella vulgaris in a mixture of primary and secondary municipal wastewa-
ter. Renew. Energy 71, 502 508.
Edmundson, S.J., Wilkie, A.C., 2013. Landfill leachate—a water and nutrient resource for
algae-based biofuels. Environ. Technol. 34 (13 16), 1849 1857.
El Shimi, H.I., Moustafa, S.S., 2018. Biodiesel production from microalgae grown on domes-
tic wastewater: feasibility and Egyptian case study. Renew. Sustain. Energy Rev. 82,
4238 4244.
EPA, 2004. Primer for Municipal Wastewater Treatment Systems. O.o.W.M. Office of
Water, U.S. Environmental Protection Agency, Washington, DC.
Escudero, A., Blanco, F., Lacalle, A., Pinto, M., 2014. Ammonium removal from anaerobi-
cally treated effluent by Chlamydomonas acidophila. Bioresour. Technol. 153, 62 68.
Fica, Z.T., Sims, R.C., 2016. Algae-based biofilm productivity utilizing dairy wastewater:
effects of temperature and organic carbon concentration. J. Biol. Eng. 10, 18.
Ganeshkumar, V., Subashchandrabose, S.R., Dharmarajan, R., Venkateswarlu, K., Naidu, R.,
Megharaj, M., 2018. Use of mixed wastewaters from piggery and winery for nutrient
removal and lipid production by Chlorella sp. MM3. Bioresour. Technol. 256,
254 258.
Gao, F., Yang, Z.H., Li, C., Zeng, G.M., Ma, D.H., Zhou, L., 2015. A novel algal biofilm
membrane photobioreactor for attached microalgae growth and nutrients removal from
secondary effluent. Bioresour. Technol. 179, 8 12.
Gao, F., Li, C., Yang, Z.H., Zeng, G.M., Mu, J., Liu, M., et al., 2016. Removal of nutrients,
organic matter, and metal from domestic secondary effluent through microalgae cultiva-
tion in a membrane photobioreactor. J. Chem. Technol. Biotechnol. 91 (10),
2713 2719.
Ge, S., Champagne, P., 2016. Nutrient removal, microalgal biomass growth, harvesting and
lipid yield in response to centrate wastewater loadings. Water Res. 88, 604 612.
Gentili, F.G., 2014. Microalgal biomass and lipid production in mixed municipal, dairy, pulp
and paper wastewater together with added flue gases. Bioresour. Technol. 169, 27 32.
Giese, A.C., 1979. Cell Physiology. Cengage Learning EMEA, London, UK.
Goncalves, A.L., Pires, J.C.M., Simoes, M., 2016. Wastewater polishing by consortia of
Chlorella vulgaris and activated sludge native bacteria. J. Cleaner Prod. 133, 348 357.
Grobbelaar, J.U., 2004. Algal nutrition. Mineral nutrition. In: Richmond, A. (Ed.), Handbook
of Microalgal Culture Biotechnology and Applied Phycology, vol. 1. Blackwell Science,
Oxford, p. 588.
Gu, H., Nagle, N., Pienkos, P.T., Posewitz, M.C., 2015. Nitrogen recycling from fuel-
extracted algal biomass: residuals as the sole nitrogen source for culturing Scenedesmus
acutus. Bioresour. Technol. 184 (0), 153 160.
Gupta, S.K., Ansari, F.A., Shriwastav, A., Sahoo, N.K., Rawat, I., Bux, F., 2016. Dual role of
Chlorella sorokiniana and Scenedesmus obliquus for comprehensive wastewater treat-
ment and biomass production for bio-fuels. J. Cleaner Prod. 115, 255 264.