Page 301 - Refining Biomass Residues for Sustainable Energy and Bioproducts
P. 301
Effective utilization of sugarcane trash for energy production 269
References
Ajmeri, J.R., Ajmeri, C.J., 2016. Developments in nonwovens as agro textiles. Adv. Tech.
Nonwovens 365 384.
Arshad, M., Ahmed, S., 2016. Cogeneration through bagasse: a renewable strategy to meet
the future energy needs. Renew. Sustain. Energy Rev. 54, 732 747.
Arul Gnanaraj, R., 2012. Applications of sugarcane wax and its products: a review. Int. J.
ChemTech Res. 4 (2), 705 712.
Bentsen, N.S., Felby, C., Thorsen, B.J., 2014. Agricultural residue production and potentials
for energy and materials services. Prog. Energy Combust. Sci. 40, 59 73.
Bilba, K., Arse `ne, M., Ouensanga, A., 2003. Sugar cane bagasse fibre reinforced cement
composites. Part I. Influence of the botanical components of bagasse on the setting of
bagasse/cement composite. Cem. Concr. Compos. 25 (1), 91 96.
Camassola, M., Dillon, A.J., 2010. Cellulases and xylanases production by Penicillium echi-
nulatum grown on sugarcane bagasse in solid-state fermentation. Appl. Biochem.
Biotechnol. 162, 1889 1900.
Canilha, L., Santos, V.T.O., Rocha, G.J.M., Silva, J.B.A.E., Giulietti, M., Silva, S.S., et al.,
2011. A study on the pretreatment of a sugarcane bagasse sample with dilute sulfuric
acid. J. Ind. Microbiol. Biotechnol 38 (9), 1467 1475.
Cardoen, D., Joshi, P., Diels, L., Sarma, P.M., Pant, D., 2015. Agriculture biomass in India:
Part 1. Estimation and characterization. Resour. Conserv. Recycl. 102, 39 48.
Chandel, A.K., da Silva, S.S., Carvalho, W., Singh, O.V., 2012. Sugarcane bagasse and
leaves: foreseeable biomass of biofuel and bio-products. J. Chem. Technol. Biotechnol.
87 (1), 11 20. Available from: https://doi.org/10.1002/jctb.2742.
Cherubini, F., 2010. The biorefinery concept: using biomass instead of oil for producing
energy and chemicals. Energy Convers. Manage. 51 (7), 1412 1421.
Diedericks, D., van Rensburg, E., Garcia-Aparicio, M.D., Gorgens, J.F., 2012. Enhancing the
enzymatic digestibility of sugarcane bagasse through the application of an ionic liquid
in combination with an acid catalyst. Biotechnol. Progr. 28 (1), 76 84.
Dotaniya, M.L., Datta, D.R., Biswas, C.K., Dotaniya, Meena, B.L., Rajendiran, S., et al.,
2016. Manju Lata use of sugarcane industrial by-products for improving sugarcane pro-
ductivity and soil health. Int. J. Recycl. Org. Waste Agric. 5 (3), 185 194.
Fadel, M., Zohri, A.N.A., Makawy, M., Hsona, M., Abdel-Aziz, A., 2014. Recycling of
vinasse in ethanol fermentation and application in Egyptian distillery factories. Afr. J.
Biotechnol. 13, 43904398.
FAPESP, setembro de 2015. E2G: a vez da biotecnologia na biomassa. Revista FAPESP (235).
Farzad, S., Ali Mandegari, M., Guo, M., Haigh, K.F., Shah, N., Grgens, J.F., 2017.
Multiproduct biorefineries from lignocelluloses: a pathway to revitalisation of the sugar
industry. Biotechnol. Biofuels 10, 87.
Fernandes, B.S., Vieira, J.P.F., Contesini, F.J., Mantelatto, P.E., Zaiat, M., Pradellaa, J.G.D.C., 2017.
High value added lipids produced by microorganisms: a potential use of sugarcane vinasse.
Crit. Rev. Biotechnol. Available from: https://doi.org/10.1080/07388551.2017.1304356.
Ferreira, V., da Silva, R., Silva, D., Gomes, E., 2010. Production of pectate lyase by
Penicillium viridicatum RFC3 in solid-state and submerged fermentation. Int. J.
Microbiol. 2010, 1 8.
Figueroa, J.E.J., Ardila, Y.C., Lunelli, B.H., Filho, R.M., Wolf Maciel, M.R., 2012.
Sugarcane bagasse as raw material to Syngas production. In: 22nd European
Symposium on Computer Aided Process Engineering, pp. 1118 1122.