Page 303 - Refining Biomass Residues for Sustainable Energy and Bioproducts
P. 303
Effective utilization of sugarcane trash for energy production 271
Reitz, R.D., Duraisamy, G., 2015. Review of high efficiency and clean reactivity controlled
compression ignition (RCCI) combustion in internal combustion engines. Prog. Energy
Combust. Sci. 46, 12 71.
Ricardo Soccol, C., Faraco, V., Karp, S., Vandenberghe, L.P.S., Thomaz-Soccol, V.,
Woiciechowski, A., et al., 2011. Lignocellulosic bioethanol: current status and future
perspectives. In: Pandey, A., Larroche, C., Ricke, S.C., Dussap, C.G., Gnansounou, E.
(Eds.), Biofuels. Academic Press, Amsterdam, pp. 101 122.
Rodriguez, J.A., Mateos, J.C., Nungaray, J., Gonza’lez, V., Bhagnagar, T., Roussos, S.,
et al., 2006. Improving lipase production by nutrient source modification using
Rhizopus homothallicus cultured in solid state fermentation. Process Biochem. 41,
2264 2269.
Rudorff, B.F.T., Aguiar, D.A., Silva, W.F., Sugawara, L.M., Adami, M., Moreira, M.A.,
2010. Studies on the rapid expansion of sugarcane for ethanol production in Sa ˜o Paulo
State (Brazil) using Landsat data. Remote Sens 2 (4), 1057 1076.
Santos, R.F., Borsoi, A., Secco, D., Souza, S.N.M., de Constanzi, R.N., 2011. Brazil’s poten-
tial for generating electricity from biogas from stillage. In: World Renewable Energy
Congress. Sweden.
Saxena, R.C., Adhikari, D.K., Goyal, H.B., 2009. Biomass-based energy fuel through bio-
chemical routes: a review. Renew. Sustain. Energy Rev. 13, 167 178.
Singh, A., Bajar, S., Bishnoi, N.R., Singh, N., 2010. Laccase production by Aspergillus het-
eromorphus using distillery spent wash and lignocellulosic biomass. J. Hazard. Mater.
176, 1079 1082.
Solomon, S., 2011. Sugarcane by-products based industries in India. Sugar Tech. 13 (4),
408 416.
Stanmore, B.R., 2010. Generation of energy from sugarcane bagasse by thermal treatment.
Waste Biomass Valorization 1 (1), 77 89.
Tahir, H., Sultan, M., Akhtar, N., Hameed, U., Abid, T., 2016. Application of natural and
modified sugar cane bagasse for the removal of dye from aqueous solution. J. Saudi
Chem. Soc. 20 (1), 115 121.
Teclu, D., Tivchev, G., Laing, M., Wallis, M., 2009. Determination of the elemental compo-
sition of molasses and its suitability as carbon source for growth of sulphate reducing
bacteria. J. Hazard. Mater. 161 (2 3), 1157 1165.
Tekle, B, 2011. Bagasse ash as a cement replacing material. ,https://doi.org/10.13140/
RG.2.1.2257.8166..
Veana, F., Martı ´nez-Herna ´ndez, J.L., Aguilar, C.N., Rodrı ´guez-Herrera, R., Michelen, G., 2014.
Utilization of molasses and sugar cane bagasse for production of fungal invertase in solid
state fermentation using Aspergillus niger GH1. Braz. J. Microbiol. 45 (2), 373 377.
Vinardell, M.P., Mitjans, M., 2017. Lignins and their derivatives with beneficial effects on
human health. Int. J. Mol. Sci. 18 (6), 1219.
Walter, A., Dolzan, P., Quilodra ´n, O., de Oliveira, J.G., da Silva, C., Piacente, F., et al.,
2011. Sustainability assessment of bio-ethanol production in Brazil considering land
use change, GHG emissions and socio-economic aspects. Energy Policy 39,
5703 5716.
Wyman, C.E., Dale, B.E., Elander, R.T., Holtzapple, M., Ladisch, M.R., Lee, Y.Y., 2005.
Coordinated development of leading biomass pretreatment technologies. Bioresour.
Technol. 96, 1959 1966.
Yang, X., Wang, K., Wang, H., Zhang, J., Mao, Z., 2016. Ethanol fermentation characteris-
tics of recycled water by Saccharomyces cerevisiae in an integrated ethanol-methane
fermentation process. Bioresour. Technol. 220, 609614.