Page 370 - Refining Biomass Residues for Sustainable Energy and Bioproducts
P. 370

334                     Refining Biomass Residues for Sustainable Energy and Bioproducts


         Pasquale, G., Va ´zquez, P., Romanelli, G., Baronetti, G., 2012. Catalytic upgrading of levuli-
             nic acid to ethyl levulinate using reusable silica-included Wells-Dawson heteropolyacid
             as catalyst. Catal. Commun. 18, 115 120.
         Peretz, R., Gerchman, Y., Mamane, H., 2017. Ozonation of tannic acid to model biomass pre-
             treatment for bioethanol production. Bioresour. Technol. 241, 1060 1066.
         Pulidindi, I.N., Kim, T.H., 2018. Conversion of levulinic acid from various herbaceous bio-
             mass species using hydrochloric acid and effects of particle size and delignification.
             Energies 11 (3), 621.
         Rachtanapun, P., Luangkamin, S., Tanprasert, K., Suriyatem, R., 2012. Carboxymethyl cellu-
             lose film from durian rind. LWT Food Sci. Technol. 48 (1), 52 58.
         Rackemann, D.W., Doherty, W.O., 2011. The conversion of lignocellulosics to levulinic
             acid. Biofuels, Bioprod. Biorefin. 5 (2), 198 214.
         Rackemann, D.W., Bartley, J.P., Harrison, M.D., Doherty, W.O.S., 2016. The effect of pre-
             treatment on methanesulfonic acid-catalyzed hydrolysis of bagasse to levulinic acid, for-
             mic acid, and furfural. RSC Adv. 6 (78), 74525 74535.
         Ramli, N.A.S., Amin, N.A.S., 2014. Catalytic hydrolysis of cellulose and oil palm biomass in
             ionic liquid to reducing sugar for levulinic acid production. Fuel Process. Technol. 128,
             490 498.
         Ramli, N.A.S., Amin, N.A.S., 2015. Optimization of oil palm fronds conversion to levulinic
             acid using Fe/HY zeolite catalyst. Sains Malays. 44 (6), 883 891.
         Ramli, N.A.S., Amin, N.A.S., 2016. Optimization of biomass conversion to levulinic acid in
             acidic ionic liquid and upgrading of levulinic acid to ethyl levulinate. BioEnergy Res.
             1 14.
         Ramli, N., Amin, N., Ware, I., 2014a. Optimization of oil palm fronds pretreatment using
             ionic liquid for levulinic acid production. J. Teknol. 71 (1), 33 41.
         Ramli, N.A.S., Ya’aini, N., Amin, N.A.S., 2014b. Comparison of response surface methodol-
             ogy and artificial neural network for optimum levulinic acid production from glucose,
             empty fruit bunch and kenaf. Int. J. Nano Biomater. 5 (1), 59 74.
         Salehian, P., Karimi, K., 2013. Alkali Pretreatment for improvement of biogas and ethanol
             production from different waste parts of pine tree. Ind. Eng. Chem. Res. 52 (2),
             972 978.
         Sarwono, A., Man, Z., Muhammad, N., Khan, A.S., Hamzah, W.S.W., Rahim, A.H.A., et al.,
             2017. A new approach of probe sonication assisted ionic liquid conversion of glucose,
             cellulose and biomass into 5-hydroxymethylfurfural. Ultrason. Sonochem. 37, 310 319.
         Schmidt, L.M., Mthembu, L.D., Reddy, P., Deenadayalu, N., Kaltschmitt, M., Smirnova, I.,
             2017. Levulinic acid production integrated into a sugarcane bagasse based biorefinery
             using thermal-enzymatic pretreatment. Ind. Crops Prod. 99, 172 178.
         Schultz-Jensen, N., Ka ´da ´r, Z., Thomsen, A.B., Bindslev, H., Leipold, F., 2011. Plasma-
             assisted pretreatment of wheat straw for ethanol production. Appl. Biochem. Biotechnol.
             165 (3), 1010 1023.
         Schultz-Jensen, N., Thygesen, A., Leipold, F., Thomsen, S.T., Roslander, C., Lilholt, H.,
             et al., 2013. Pretreatment of the macroalgae Chaetomorpha linum for the production of
             bioethanol   comparison of five pretreatment technologies. Bioresour. Technol. 140,
             36 42.
         Sega, A., Zanardi, I., Chiasserini, L., Gabbrielli, A., Bocci, V., Travagli, V., 2010. Properties
                                1
             of sesame oil by detailed H and  13 C NMR assignments before and after ozonation and
             their correlation with iodine value, peroxide value, and viscosity measurements. Chem.
             Phys. Lipids 163 (2), 148 156.
   365   366   367   368   369   370   371   372   373   374   375