Page 69 - Refining Biomass Residues for Sustainable Energy and Bioproducts
P. 69

Bacterial production of fatty acid and biodiesel: opportunity and challenges  43

           Acknowledgments


           Manish Kumar is thankful to Ecole Polytechnique Federale de Lausanne, Switzerland for
           providing visiting fellowship. The authors would like to express sincere thanks to the
           Department of Biotechnology (DBT), Government of India, Jawaharlal Nehru University
           (JNU), New Delhi, India for financial assistance.


           References


           Abraham, A., Mathew, A.K., Sindhu, R., Pandey, A., Binod, P., 2015. Potential of rice straw
               for bio-refining: an overview. Bioresour. Technol. 215, 29 36.
           Alvarez, H.M., 2003. Relationship between β-oxidation pathway and the hydrocarbon-
               degrading profile in actinomycetes bacteria. Int. Biodeterior. Biodegrad. 52, 35 42.
           Alvarez, H.M., Steinbu ¨chel, A., 2002. Triacylglycerols in prokaryotic microorganisms. Appl.
               Microbiol. Biotechnol. 60, 367 376.
           Alvarez, H.M., Mayer, F., Fabritius, D., Steinbu ¨chel, A., 1996. Formation of intracytoplasmic
               lipid inclusions by Rhodococcus opacus strain PD630. Arch. Microbiol. 165, 377 386.
           Alvarez, H.M., Kalscheuer, R., Steinbchel, A., 1997a. Accumulation of storage lipids in spe-
               cies of Rhodococcus and Nocardia and effect of inhibitors and polyethylene glycol. Eur.
               J. Lipid Sci. Technol. 99, 239 246.
           Alvarez, H.M., Pucci, O.H., Steinbu ¨chel, A., 1997b. Lipid storage compounds in marine bac-
               teria. Appl. Microbiol. Biotechnol. 47, 132 139.
           Alvarez, H.M., Luftmann, H., Silva, R.A., Cesari, A.C., Viale, A., Wltermann, M., et al.,
               2002. Identification of phenyldecanoic acid as a constituent of triacylglycerols and wax
               esters produced by Rhodococcus opacus PD630. Microbiology 148, 1407 1412.
           Aresta, M., Dibenedetto, A., Dumeignil, F., 2013. Biorefinery: from biomass to chemicals
               and fuels. Green Process. Synth. 2, 87 88.
           Bharti, R.K., Srivastava, S., Thakur, I.S., 2014a. Production and characterization of biodiesel
               from carbon dioxide concentrating chemolithotrophic bacteria, Serratia sp. ISTD04.
               Bioresour. Technol. 153, 189 197.
           Bharti, R.K., Srivastava, S., Thakur, I.S., 2014b. Extraction of extracellular lipids from che-
               moautotrophic bacteria Serratia sp. ISTD04 for production of biodiesel. Bioresour.
               Technol. 165, 201 204.
           Biermann, U., Bornscheuer, U., Meier, M.A.R., Metzger, J.O., Sch¨ afer, H.J., 2011. Oils and
               fats as renewable raw materials in chemistry. Angew. Chem. Int. 50, 3854 3871.
           Bokinsky, G., Peralta-Yahya, P.P., George, A., Holmes, B.M., Steen, E.J., Dietrich, J., et al.,
               2011. Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass
               using engineered Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 108, 19949 19954.
           Bruno, L., Di Pippo, F., Antonaroli, S., Gismondi, A., Valentini, C., Albertano, P., 2012.
               Characterization of biofilm-forming cyanobacteria for biomass and lipid production. J.
               Appl. Microbiol. 113, 1052 1064.
           Chisti, Y., 2007. Biodiesel from microalgae. Biotechnol. Adv. 25, 294 306.
           Clark, J.H., Buldarni, V., Deswarte, F.I.E., 2006. Green chemistry and the biorefinery: a part-
               nership for a sustainable future. Green Chem. 8, 853 860.
           D2.1., 2017. Bio-Based Products and Applications Potential. ,www.bioways.eu..
           Darnoko, D., Cheryan, M., 2000. Kinetics of palm oil transesterification in a batch reactor. J.
               Am. Oil Chem. Soc. 77, 1263 1267.
   64   65   66   67   68   69   70   71   72   73   74