Page 73 - Refining Biomass Residues for Sustainable Energy and Bioproducts
P. 73
Bacterial production of fatty acid and biodiesel: opportunity and challenges 47
Ma, F., Hanna, M.A., 1999. Biodiesel production: a review. Bioresour. Technol. 70, 1 15.
Makula, R.A., Lockwood, P.J., Finnerty, W.R., 1975. Comparative analysis of the lipids of
Acinetobacter species grown on hexadecane. J. Bacteriol. 121, 250 258.
McCarthy, C., 1971. Utilization of palmitic acid by Mycobacterium avium. Infect. Immun. 4,
199 204.
Meng, X., Yang, J., Xu, X., Zhang, L., Nie, Q., Xian, M., 2009. Biodiesel production from
oleaginous microorganisms. Renew. Energy 34, 1 5.
Moazami, N., Ranjbar, R., Ashori, A., Tangestani, M., Nejad, A.S., 2011. Biomass and lipid
productivities of marine microalgae isolated from the Persian Gulf and the Qeshm
Island. Biomass Bioenerg. 35, 1935 1939.
Modiri, S., Sharafi, H., Alidoust, L., Hajfarajollah, H., Haghighi, O., Azarivand, A., et al.,
2015. Lipid production and mixotrophic growth features of cyanobacterial strains iso-
lated from various aquatic sites. Microbiology 161, 662 673.
Mondala, A., Liang, K., Toghiani, H., Hernandez, R., French, T., 2009. Biodiesel production
by in situ transesterification of municipal primary and secondary sludges. Bioresour.
Technol. 100, 1203 1210.
Morya, R., Kumar, M., Thakur, I.S., 2018. Utilization of glycerol by Bacillus sp. ISTVK1 for
production and characterization of polyhydroxyvalerate. Bioresour. Technol. Rep. 2,
1 6.
Muller, E.E.L., Sheik, A.R., Wilmes, P., 2014. Lipid-based biofuel production from wastewa-
ter. Curr. Opin. Biotechnol. 30, 9 16.
Ngothai, Y., 2017. Biomaterials: biological production of fuels and chemicals. Green
Process. Synth. 6, 251 252.
Okamura, Y., Nakai, S., Ohkawachi, M., Suemitsu, M., Takahashi, H., Aki, T., et al., 2016.
Isolation and characterization of bacterium producing lipid from short chain fatty acids.
Bioresour. Technol. 201, 215 221.
Olukoshi, E.R., Packter, N.M., 1994. Importance of stored triacylglycerols in Streptomyces:
possible carbon source for antibiotics. Microbiology 140, 931 943.
ˇ
Pa ´drova ´, K., Lukavsky ´, J., Nedbalova ´, L., Cejkova ´, A., Cajthaml, T., Sigler, K., et al., 2015.
Trace concentrations of iron nanoparticles cause overproduction of biomass and lipids
during cultivation of cyanobacteria and microalgae. J. Appl. Phycol. 27, 1443 1451.
Park, M.O., Heguri, K., Hirata, K., Miyamoto, K., 2005. Production of alternatives to fuel oil
from organic waste by the alkane-producing bacterium, Vibrio furnissii M1. J. Appl.
Microbiol. 98, 324 331.
Patnayak, S., Sree, A., 2005. Screening of bacterial associates of marine sponges for single
cell oil and PUFA. Lett. Appl. Microbiol. 40, 358 363.
Pfleger, B.F., Gossing, M., Nielsen, J., 2015. Metabolic engineering strategies for microbial
synthesis of oleochemicals. Metab. Eng. 29, 1 11.
Ramadhas, A.S., Jayaraj, S., Muraleedharan, C., 2004. Use of vegetable oils as I.C. engine
fuels—a review. Renew. Energy 29, 727 742.
Ratledge, C., Wynn, J.P., 2002. The biochemistry and molecular biology of lipid accumula-
tion in oleaginous microorganisms. Adv. Appl. Microbiol. 51, 1 51.
Reiser, S., Somerville, C., 1997. Isolation of mutants of Acinetobacter calcoaceticus deficient
in wax ester synthesis and complementation of one mutation with a gene encoding a
fatty acyl coenzyme A reductase. J. Bacteriol. 179, 2969 2975.
Rottig, A., Steinbu ¨chel, A., 2013. Acyltransferases in bacteria. Microbiol. Mol. Biol. Rev.
77, 277 321.
Ro ¨ttig, A., Steinbu ¨chel, A., 2016. Bacteria as Sources of (Commercial) Lipids. ,http://lipi-
dlibrary.aocs.org/Biochemistry/content.cfm?ItemNumber 5 41495..