Page 75 - Refining Biomass Residues for Sustainable Energy and Bioproducts
P. 75

Bacterial production of fatty acid and biodiesel: opportunity and challenges  49


           Thakur, I.S., Kumar, M., Varjani, S.J., Wu, Y., Gnansounou, E., Ravindran, S., 2018.
               Sequestration and utilization of carbon dioxide by chemical and biological methods for
               biofuels and biomaterials by chemoautotrophs: opportunities and challenges. Bioresour.
               Technol. 256, 478 490.
           Tripathi, R., Singh, J., Thakur, I.S., 2015. Characterization of microalga Scenedesmus sp.
               ISTGA1 for potential CO 2 sequestration and biodiesel production. Renew. Energy 74,
               774 781.
           Valentin, H.F., Dennis, D., 1996. Metabolic pathway for poly(3-hydroxybutyrate-co-3-hydro-
               xyvalerate) formation in Nocardia corallina: inactivation of mutB by chromosomal inte-
               gration of a kanamycin resistance gene. Appl. Environ. Microbiol. 62, 372 379.
           Valle-Rodrı ´guez, J.O., Shi, S., Siewers, V., Nielsen, J., 2014. Metabolic engineering of
               Saccharomyces cerevisiae for production of fatty acid ethyl esters, an advanced biofuel,
               by eliminating non-essential fatty acid utilization pathways. Appl. Energy. 115,
               226 232.
           Venkata Mohan, S., Velvizhi, G., Krishna, K.V., Babu, M.L., 2014. Microbial catalyzed elec-
               trochemical systems: a bio-factory with multi-facet applications. Bioresour. Technol.
               165, 355 364.
           Venkata Mohan, S., Nikhil, G.N., Chiranjeevi, P., Nagendranatha, R.C., Rohit, M.V., Kumar,
               A.N., et al., 2016. Waste biorefinery models towards sustainable circular bioeconomy:
               critical review and future perspectives. Bioresour. Technol. 215, 2 12.
           Voss, I., Steinbu ¨chel, A., 2001. High cell density cultivation of Rhodococcus opacus for lipid
               production at a pilot-plant scale. Appl. Microbiol. Biotechnol. 55, 547 555.
           Wang, Y., Ou, S., Liu, P., Zhang, Z., 2007. Preparation of biodiesel from waste cooking oil
               via two-step catalyzed process. Energy Convers. Manage. 48, 184 188.
           Wu, H., Karanjikar, M., San, K.Y., 2014a. Metabolic engineering of Escherichia coli for effi-
               cient free fatty acid production from glycerol. Metab. Eng 25, 82 91.
           Wu, H., Lee, J., Karanjikar, M., San, K.Y., 2014b. Efficient free fatty acid production from
               woody biomass hydrolysate using metabolically engineered Escherichia coli. Bioresour.
               Technol. 169, 119 125.
           Xu, Y., Chu, H., Gao, C., Tao, F., Zhou, Z., Li, K., et al., 2014. Systematic metabolic engi-
               neering of Escherichia coli for high-yield production of fuel biochemical 2,3-butanediol.
               Metab. Eng. 23, 22 33.
           Yan, Y., Liao, J.C., 2009. Engineering metabolic systems for production of advanced fuels. J.
               Ind. Microbiol. Biotechnol. 36, 471 479.
           Zhang, F., Carothers, J.M., Keasling, J.D., 2012. Design of a dynamic sensor-regulator sys-
               tem for production of chemicals and fuels derived from fatty acids. Nat. Biotechnol. 30,
               354.
           Zheng, Y., Li, L., Liu, Q., Qin, W., Yang, J., Cao, Y., et al., 2012. Boosting the free fatty
               acid synthesis of Escherichia coli by expression of a cytosolic Acinetobacter baylyi
               thioesterase. Biotechnol. Biofuels 5, 76.
   70   71   72   73   74   75   76   77   78   79   80