Page 72 - Refining Biomass Residues for Sustainable Energy and Bioproducts
P. 72
46 Refining Biomass Residues for Sustainable Energy and Bioproducts
Kumar, M., Ghosh, P., Khosla, K., Thakur, I.S., 2018a. Recovery of polyhydroxyalkanoates
from municipal secondary wastewater sludge. Bioresour. Technol. 255, 111 115.
Kumar, M., Sundaram, S., Gnansounou, E., Christian Larroche, C., Thakur, I.S., 2018b.
Carbon dioxide capture, storage and production of biofuel and biomaterials by bacteria:
a review. Bioresour. Technol. 247, 1059 1068.
Kumar, M., Verma, S., Gazara, R.K., Kumar, M., Pandey, A., Verma, P.K., et al., 2018c.
Genomic and proteomic analysis of lignin degrading and polyhydroxyalkanoate accumu-
lating β-proteobacterium Pandoraea sp. ISTKB. Biotechnol. Biofuels 11, 154.
Kurosawa, K., Wewetzer, S.J., Sinskey, A.J., 2013. Engineering xylose metabolism in
triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production.
Biotechnol. Biofuels 6, 134.
Kurosawa, K., Wewetzer, S.J., Sinskey, A.J., 2014. Triacylglycerol production from corn sto-
ver using a xylose fermenting Rhodococcus opacus strain for lignocellulosic biofuels. J.
Microb. Biochem. Technol. 6, 254 259.
Kurosawa, K., Laser, J., Sinskey, A.J., 2015a. Tolerance and adaptive evolution of
triacylglycerol-producing Rhodococcus opacus to lignocellulose-derived inhibitors.
Biotechnol. Biofuels 8, 76.
Kurosawa, K., Plassmeier, J., Kalinowski, J., Ru ¨ckert, C., Sinskey, A.J., 2015b. Engineering
l-arabinose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellu-
losic fuel production. Metab. Eng. 30, 89 95.
Kurosawa, K., Radek, A., Plassmeier, J.K., Sinskey, A.J., 2015c. Improved glycerol utiliza-
tion by a triacylglycerol-producing Rhodococcus opacus strain for renewable fuels.
Biotechnol. Biofuels 8, 31.
Ladygina, N., Dedyukhina, E.G., Vainshtein, M.B., 2006. A review on microbial synthesis of
hydrocarbons. Proc. Biochem. 41, 1001 1014.
Lennen, R.M., Pfleger, B.F., 2012. Engineering Escherichia coli to Synthesize Free Fatty
Acids.
Lennen, R.M., Pfleger, B.F., 2013. Microbial production of fatty acid-derived fuels and che-
micals. Curr. Opin. Biotechnol. 24, 1044 1053.
Li, Y., Zhao, Z., Bai, F., 2007. High-density cultivation of oleaginous yeast Rhodosporidium
toruloides Y4 in fed-batch culture. Enzyme Microb. Technol. 41, 312 317.
Li, B.Z., Balan, V., Yuan, Y.J., Dale, B.E., 2010. Process optimization to convert forage and
sweet sorghum bagasse to ethanol based on ammonia fiber expansion (AFEX) pretreat-
ment. Bioresour. Technol. 101, 1285 1292.
Liang, Y., Tang, T., Umagiliyage, A.L., Siddaramu, T., McCarroll, M., Choudhary, R., 2012.
Utilization of sorghum bagasse hydrolysates for producing microbial lipids. Appl.
Energy 91, 451 458.
Lin, F., Chen, Y., Levine, R., Lee, K., Yuan, Y., Lin, X.N., 2013. Improving fatty acid avail-
ability for bio-hydrocarbon production in Escherichia coli by metabolic engineering.
PLoS One 8, 78595.
Liu, T., Vora, H., Khosla, C., 2010. Quantitative analysis and engineering of fatty acid bio-
synthesis in E. coli. Metab. Eng. 12, 378 386.
Liu, X., Sheng, J., Curtiss III, R., 2011. Fatty acid production in genetically modified cyano-
bacteria. Proc. Natl. Acad. Sci. U.S.A. 108, 6899 6904.
Lu, X., Vora, H., Khosla, C., 2008. Overproduction of free fatty acids in E. coli: implications
for biodiesel production. Metab. Eng. 10, 333 339.
Luoma, P., Vanhanen, J., Tommila, P., 2011 Distributed Bio-Based Economy—Driving
Sustainable Growth, Sitra. ,http://www.sitra.fi/julkaisu/2011/distributed-bio-
basedeconomy..