Page 70 - Refining Biomass Residues for Sustainable Energy and Bioproducts
P. 70

44                      Refining Biomass Residues for Sustainable Energy and Bioproducts


         De Andre `s, C., Espuny, M.J., Robert, M., Mercade ´, M.E., Manresa, A., Guinea, J., 1991.
             Cellular lipid accumulation by Pseudomonas aeruginosa 44T1. Appl. Microbiol.
             Biotechnol. 35, 813 816.
         Demirbas, A., 2005. Biodiesel production from vegetable oils via catalytic and noncatalytic
             supercritical methanol transesterification methods. Prog. Energy Combust. Sci. 31,
             466 487.
         Demirbas, A., 2008. Biofuels sources, biofuel policy, biofuel economy and global biofuel
             projections. Energy Convers. Manage. 49, 2106 2116.
         Demirbas, A., 2009. Progress and recent trends in biodiesel fuels. Energy Convers. Manage.
             50, 14 34.
         Desomer, J., Dhaese, P., Van, M.M., 1990. Transformation of Rhodococcus fascians by high-
             voltage electroporation and development of R. fascians cloning vectors. Appl. Environ.
             Microbiol. 56, 2818 2825.
         Eberly, J.O., Ringelberg, D.B., Indest, K.J., 2013. Physiological characterization of lipid
             accumulation and in vivo ester formation in Gordonia sp. KTR9. J. Ind. Microbiol.
             Biotechnol. 40, 201 208.
         Elbahloul, Y., Steinbu ¨chel, A., 2010. Pilot-scale production of fatty acid ethyl esters by an
             engineered Escherichia coli strain harboring the p(Microdiesel) plasmid. Appl. Environ.
             Microbiol. 76, 4560 4565.
                 ´
         Francisco, E.C., Franco, T.T., Wagner, R., Jacob-Lopes, E., 2014. Assessment of different
             carbohydrates as exogenous carbon source in cultivation of cyanobacteria. Bioprocess
             Biosyst. Eng. 37, 1497 1505.
         Gao, D., Zeng, J., Yu, X., Dong, T., Chen, S., 2014. Improved lipid accumulation by mor-
             phology engineering of oleaginous fungus Mortierella isabellina. Biotechnol. Bioeng.
             111, 1758 1766.
         Gnansounou, E., Pandey, A., 2017. Classification of biorefineries taking into account sustain-
             ability potentials and flexibility. In: Life-Cycle Assessment of Biorefineries. EPFL
             Chapter-226362. ,https://doi.org/10.1016/B978-0-444-63585-3.00001-2..
         Gouda, M.K., Omar, S.H., Aouad, L.M., 2008. Single cell oil production by Gordonia sp.
             DG using agroindustrial wastes. World J. Microbiol. Biotechnol. 24, 1703 1711.
         Guerreiro, L., Castanheiro, J.E., Fonseca, I.M., Martin-Aranda, R.M., Ramos, A.M., Vital, J.,
             2006. Transesterification of soybean oil over sulfonic acid functionalized polymeric
             membranes. Catal. Today 118, 166 171.
         Guo, D., Zhu, J., Deng, Z., Liu, T., 2014. Metabolic engineering of Escherichia coli for pro-
             duction of fatty acid short-chain esters through combination of the fatty acid and 2-keto
             acid pathways. Metab. Eng. 22, 69 75.
         Herna ´ndez, M.A., Comba, S., Arabolaza, A., Gramajo, H., Alvarez, H.M., 2015.
             Overexpression of a phosphatidic acid phosphatase type 2 leads to an increase in triacyl-
             glycerol production in oleaginous Rhodococcus strains. Appl. Microbiol. Biotechnol. 99,
             2191 2207.
         Hetzler, S., Steinbu ¨chel, A., 2013. Establishment of cellobiose utilization for lipid production
             in Rhodococcus opacus PD630. Appl. Environ. Microbiol. 79, 3122 3125.
         Himmel, M.E., Ding, S.Y., Johnson, D.K., Adney, W.S., Nimlos, M.R., Brady, J.W., et al.,
             2007. Biomass recalcitrance: engineering plants and enzymes for biofuels production.
             Science 315, 804 880.
         Hollinshead, W., He, L., Tang, Y.J., 2014. Biofuel production: an odyssey from metabolic
             engineering to fermentation scale-up. Front. Microbiol. 5, 344.
   65   66   67   68   69   70   71   72   73   74   75