Page 118 - Reliability and Maintainability of In service Pipelines
P. 118

Time-Dependent Reliability Analysis 107


                               (             !                      !)
                        R 2 μ          R2μ _ SjS  R 2 μ _ SjS  R2μ _ SjS
                                       _          _            _
                  σ _ SjS
              1
             υ 5     [       S   [2            2        Φ 2               ð4:7Þ
              R
                  σ S     σ S           σ _ SjS    σ _ SjS      σ _ SjS
           where [ and Φ are standard normal density and distribution functions, respec-
                                                                  _
           tively, μ and σ denote the mean and standard deviation of S and S, represented
           by subscripts and “|” denotes the condition. For a given Gaussian stochastic pro-
           cess with mean function μ ðtÞ, and autocovariance function C SS ðt i ; t j Þ, all terms in
                                S
           Eq. (4.7) can be determined, based on the theory of stochastic processes as
           detailed in Papoulis and Pillai (2002) as follows.

                                                1 ρ
                                                   σ _ S
                                                           S
                            μ _ SjS  5 E SS 5 R 5 μ _ S  ðR 2 μ Þ        ð4:8aÞ
                                    _

                                                   σ S
                                           2    2 1=2
                                    σ _ SjS  5 ½σ _ S  ð12ρ ފ           ð4:8bÞ
           where
                                            dμ ðtÞ
                                              S
                                          5
                                       μ _ S                             ð4:8cÞ
                                              dt

                                      2
                                                   # 1=2
                                        2
                                    5  @ C SS ðt i ; t j Þ
                                 σ _ S  4         : i5j                  ð4:8dÞ
                                         @t i @t j

                                          C _ðt i ; t j Þ
                                            SS
                                                                         ð4:8eÞ
                                                       1=2
                                 ρ 5
                                        ð
                                     C SS t i ; t i Þ:C _ S _ S  t j ; t j
             And the cross-covariance function is:
                                             @C SS ðt i ; t j Þ
                                   C _ t i ; t j 5                       ð4:8fÞ


                                    SS
                                                @t j
             Because it is unlikely that the corrosion depth in a given pipe exceeds the wall
           thickness at the beginning of structural service, the probability of failure due to
           corrosion at t 5 0 is zero, i.e., P f 0ðÞ 5 0. The solution to Eq. (4.5) can be
           expressed, after substituting Eq. (4.7) into Eq. (4.5), and considering that R is
                   _
           constant (R 5 0) therefore:
                                       (            !                 !)
                    ð  t
                      σ _ SjS  ðtÞ  R 2 μ ðtÞ  μ _ SjS ðtÞ  μ _ SjS  ðtÞ  μ _ SjS  ðtÞ
                                   S
             P f tðÞ 5     [             [2           1       Φ          d τ
                     0  σ S ðtÞ  σ S ðtÞ       σ _ SjS ðtÞ  σ _ SjS  ðtÞ  σ _ SjS  ðtÞ
                                                                          ð4:9Þ
             The application of Eq. (4.9) for calculation of the failure probability for differ-
           ent case studies will be presented in sections 5.1.1 and 5.4.1.1 in Chapter 5.
   113   114   115   116   117   118   119   120   121   122   123