Page 601 - Rock Mechanics For Underground Mining
P. 601

DERIVATION OF EQUATIONS


                                                                               w Z w      2

                                                             
   cos  (cos   −    sin   ) sin   0
                                                           Z 2                2c
                                                    − 2
                                                          c    sin(  +   0 ) sin(  p2 +   0 ) sin(  p2 −   )

                                                                2
                                                               
                            2
                                                         w    Z w   cos(  p2 −   ) sin(  p2 −  ) sin   0
                                                    −                                                 (D.15)
                                                            c     sin(  +   0 ) sin(  p2 +   0 ) sin(  p2 −   )

                                        Critical tension crack depth. The left-hand side of equation D.12 can be differen-
                                        tiated with respect to Z 2 holding   p2 constant; the result is equated to zero to obtain
                                        the critical value of Z 2 as
                                                                          cos
                                                                Z 2
                                                                  =                                   (D.16)
                                                               c    cos   p2 sin(  p2 −   )

                                        Critical failure plane inclination. By holding Z 2 constant, differentiating equation
                                        D.12 with respect to   p2 , putting ∂ H 2 /∂  p2 = 0 and rearranging, an expression for
                                        the critical failure plane angle may be obtained as
                                                                1         −1     X

                                                            p2 =     + cos                            (D.17)
                                                                                   2 1/2
                                                                               2
                                                                2            (X + Y )
                                        where
                                                        2
                                                       
  sin(  +   0 ) sin(  p1 +   0 ) cos
                                                     H 1
                                             X =
                                                                 2
                                                    c          sin   0 sin(  p1 −  )
                                                         
 2
                                                       H 2  sin(  +   0 ) cos   0
                                                  −                2
                                                      c         sin   0
                                                          2                        2
                                                                     2
                                                         
  cos   p1 cos
                                                       Z 1                  c    H c
                                                  −                     −           K cos(  p1 +   −   w )
                                                      c     sin(  p1 −  )      c
                                                             2

                                                      w    Z w
                                                  +            cos                                    (D.18)
                                                         c
                                        and
                                                       2                    2

                                                    H 2  sin(  +   0 )    H 1  sin(  +   0 ) sin(  p1 +   0 ) sin
                                            Y =                    +
                                                                                    2
                                                   c       sin   0      c         sin   0 sin(  p1 −  )
                                                         2                        2

                                                      Z 1  cos   sin   cos   p1    Z 2
                                                −                         −        cos
                                                     c      sin(  p1 −  )     c
                                                           2                              2

                                                    c    H c                      w    Z w
                                                −            K sin(  p1 +   −   w ) +      sin        (D.19)
                                                       c                              c
                                        Angle of break. By simple trigonometric manipulation it is found that
                                                                         Z 2 sin(  p2 −  )
                                               tan   b = tan   p2 +                                   (D.20)
                                                                       H 2 sin(  +   0 )
                                                                cos   p2            − Z 2 cos
                                                                           sin   0
                                        583
   596   597   598   599   600   601   602   603   604   605   606