Page 187 - Schaum's Outline of Differential Equations
P. 187

170             GRAPHICAL METHODS FOR SOLVING DIFFERENTIAL EQUATIONS            [CHAP. 18




         18.15.  Find (l)  for y' = y; y(0)  = 1, using Euler's method with h = 0.1.
                   y
                  We  proceed  exactly  as  in  Problem  18.14,  except  that we  now  calculate through n = 9. The  results of  these
              computations are given in Table  18-2.  For comparison, Table  18-2 also contains results for h = 0.05,  h = 0.001, and
              h = 0.005, with all calculations rounded to four  decimal places.

         18.16.  Find y(l)  for / = /+!; y(Q) = 0, using Euler's method with h = 0.1.
                               2
                  Here,/(*, y)=y +l,  x 0 = 0,  and  y 0  = 0;  hence,  from  Eq.  (18.5),  ?„'=/(*„,  y n)  = (y n) 2  + 1.  With  A = 0.1,
              y(l)  = y w. Then, using Eq. (18.4)  with n = 0,  1, ..., 9 successively, we obtain























                                                 Table  18-2

                               Method:   EULER'S  METHOD

                               Problem:  / = y; y(0) = 1
                                               y
                          x n                   n                    True solution
                                 h = 0.l  h = 0.05  ft = 0.01  h = 0.005  Y(x)  = f
                          0.0    1.0000   1.0000  1.0000   1.0000       1.0000

                          0.1    1.1000   1.1025  1.1046   1.1049       1.1052
                          0.2    1.2100   1.2155  1.2202   1.2208       1.2214

                          0.3    1.3310   1.3401  1.3478   1.3489       1.3499
                          0.4    1.4641   1.4775  1.4889   1.4903       1.4918

                          0.5    1.6105   1.6289  1.6446   1.6467       1.6487
                          0.6    1.7716   1.7959  1.8167   1.8194       1.8221

                          0.7    1.9487   1.9799  2.0068   2.0102       2.0138
                          0.8    2.1436   2.1829  2.2167   2.2211       2.2255

                          0.9    2.3579   2.4066  2.4486   2.4541       2.4596
                          1.0    2.5937   2.6533  2.7048   2.7115       2.7183
   182   183   184   185   186   187   188   189   190   191   192