Page 209 - Schaum's Outline of Differential Equations
P. 209

192             NUMERICAL METHODS   FOR  SOLVING DIFFERENTIAL  EQUATIONS        [CHAP. 19



                                                 Table  19-9

                                        Method:  MILNE'S METHOD

                                                      2
                                       Problem:  / = y  + 1 ; >>(0) = 0
                                             h = 0.l
                               x n
                                                                True  solution
                                        py n          y n        Y(x)  = lanx
                              0.0        —        0.0000000       0.0000000

                              0.1        —        0.1003346       0.1003347
                              0.2        —        0.2027099       0.2027100

                              0.3        —        0.3093360       0.3093363
                              0.4     0.4227227   0.4227946       0.4227932

                              0.5     0.5462019   0.5463042       0.5463025
                              0.6     0.6839791   0.6841405       0.6841368

                              0.7     0.8420238   0.8422924       0.8422884
                              0.8     1.0291628    1.0296421      1.0296386

                              0.9     1.2592330    1.2601516      1.2601582
                              1.0     1.5554357    1.5573578      1.5574077




         19.12.  Use Milne's method to solve / = y; y(0) = 1 on the interval  [0, 1] with h = 0.1.
                  Here (x, y)=y,  x 0 = 0,  and  yo=l.  From  Table  19-4,  we  find  as  the  three  additional  starting  values
                      f
              y 1= 1.1051708, y 2=  1.2214026, and y 3  = 1.3498585. Note that y{ = yi, y 2 = y 2, and y3=y 3. Then, using Eqs. (19.7)
              and (19.3) and we compute
   204   205   206   207   208   209   210   211   212   213   214