Page 168 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 168

CHAP. 7]                             VECTORS                                    159


                        1. Gradient.  The gradient of   is defined by
                                                          @    @     @     @    @     @

                                           grad   ¼r  ¼ i   þ j  þ k     ¼ i  þ j  þ k              ð12Þ
                                                          @x   @y   @z     @x   @y    @z
                                                        @    @    @
                                                                    k
                                                      ¼   i þ  j þ
                                                        @x   @y   @z
                        2. Divergence.  The divergence of A is defined by
                                                           @    @     @

                                            div A ¼r   A ¼ i  þ j  þ k   ðA 1 i þ A 2 j þ A 3 kÞ    ð13Þ
                                                           @x   @y   @z
                                                         @A 1  @A 2  @A 3
                                                         @x    @y   @z
                                                       ¼    þ    þ
                        3. Curl.  The curl of A is defined by

                                                        @    @     @
                                       curl A ¼r   A ¼ i  þ j  þ k    ðA 1 i þ A 2 j þ A 3 kÞ       ð14Þ
                                                        @x   @y   @z
                                                       i   j

                                                               k
                                                       @   @

                                                               @

                                                    ¼
                                                       @x  @y  @z



                                                       A 1  A 2  A 3
                                                        @         @           @

                                                            @         @          @

                                                    ¼ i @y  @z   j @x  @z þ k @x  @y







                                                       A 2  A 3   A 1  A 2   A 1  A 2

                                                       @A 3  @A 2   @A 1  @A 3    @A 2  @A 1
                                                                                           k
                                                        @y   @z      @z   @x      @x   @y
                                                    ¼           i þ           j þ
                        Note that in the expansion of the determinant, the operators @=@x; @=@y; @=@z must precede
                     A 1 ; A 2 ; A 3 .  In other words, r is a vector operator, not a vector.  When employing it the laws of
                     vector algebra either do not apply or at the very least must be validated. In particular, r  A is a new
                     vector obtained by the specified partial differentiation on A, while A  r is an operator waiting to act
                     upon a vector or a scalar.
                     FORMULAS INVOLVING r
                        If the partial derivatives of A, B, U, and V are assumed to exist, then
                         1. rðU þ VÞ¼rU þrV or grad ðU þ VÞ¼ grad u þ grad V
                         2. r  ðA þ BÞ¼ r   A þr   B or div ðA þ BÞþ div A þ div B
                         3. r  ðA þ BÞ¼ r   A þr   B or curl ðA þ BÞ¼ curl A þ curl B
                         4. r  ðUAÞ¼ðrUÞ  A þ Uðr   AÞ
                         5. r  ðUAÞ¼ ðrUÞ  A þ Uðr   AÞ
                         6. r  ðA   BÞ¼ B  ðr   AÞ  A  ðr   BÞ
                         7. r  ðA   BÞ¼ ðB  rÞA   Bðr   AÞ ðA  rÞB þ Aðr   BÞ
                         8. rðA   BÞ¼ðB  rÞA þðA  rÞB þ B  ðr   AÞþ A  ðr   BÞ
                                             2
                                                  2
                                                        2
                                            @ U  @ U   @ U
                                       2
                         9:  r  ðrUÞ r U        þ    þ     is called the Laplacian of U
                                            @x 2  @y 2  @z 2
                                             @ 2  @ 2  @ 2
                                         2
                                    and r     2  þ  2  þ  2  is called the Laplacian operator:
                                            @x   @y   @z
                        10.  r  ðrUÞ¼ 0.  The curl of the gradient of U is zero.
   163   164   165   166   167   168   169   170   171   172   173