Page 170 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 170

CHAP. 7]                             VECTORS                                    161


                                                 dr ¼ h 1 du 1 e 1 þ h 2 du 2 e 2 þ h 3 du 3 e 3    ð18Þ
                     The quantities h 1 ; h 2 ; h 3 are sometimes caleld scale factors.
                        If e 1 ; e 2 ; e 3 are mutually perpendicular at any point P, the curvilinear coordinates are called
                     orthogonal.  Since the basis elements are unit vectors as well as orthogonal this is an orthonormal
                     basis. In such case the element of arc length ds is given by
                                                 2          2  2   2  2   2  2
                                               ds ¼ dr   dr ¼ h 1 du 1 þ h 2 du 2 þ h 3 du 3        ð19Þ
                     and corresponds to the square of the length of the diagonal in the above parallelepiped.
                        Also, in the case of othogonal coordinates, referred to the orthonormal basis e 1 ; e 2 ; e 3 , the volume of
                     the parallelepiped is given by
                                dV ¼jg jk jdu 1 du 2 du 3 ¼jðh 1 du 1 e 1 Þ  ðh 2 du 2 e 2 Þ  ðh 3 du 3 e 3 Þj ¼ h 1 h 2 h 3 du 1 du 2 du 3  ð20Þ
                     which can be written as

                                              @r  @r
                                                      @r              @ðx; y; zÞ

                                        dV ¼             du 1 du 2 du 3 ¼    du 1 du 2 du 3         ð21Þ

                                             @u 1 @u 2  @u 3        @ðu 1 ; u 2 ; u 3 Þ
                     where @ðx; y; zÞ=@ðu 1 ; u 2 ; u 3 Þ is the Jacobian of the transformation.
                        It is clear that when the Jacobian vanishes there is no parallelepiped and explains geometrically the
                     significance of the vanishing of a Jacobian as treated in Chapter 6.
                        Note: The further significance of the Jacobian vanishing is that the transformation degenerates at the
                     point.

                     GRADIENT DIVERGENCE, CURL, AND LAPLACIAN IN ORTHOGONAL
                     CURVILINEAR COORDINATES
                        If   is a scalar function and A ¼ A 1 e 1 þ A 2 e 2 þ A 3 e 3 a vector function of orthogonal curvilinear
                     coordinates u 1 ; u 2 ; u 3 ,we have the following results.
                                          1 @     1 @      1 @
                                                                e 3
                         1: r  ¼ grad   ¼     e 1 þ    e 2 þ
                                         h 1 @u 1  h 2 @u 2  h 3 @u 3
                                           1     @           @           @
                         2: r  A ¼ div A ¼        ðh 2 ; h 3 A 1 Þþ  ðh 3 h 1 A 2 Þþ  ðh 1 h 2 A 3 Þ
                                         h 1 h 2 h 3 @u 1   @u 2        @u 3

                                                   h 1 e 1  h 2 e 2  h 3 e 3

                                             1     @    @     @

                         3: r  A ¼ curl A ¼

                                                  @u 1  @u 2  @u 3
                                           h 1 h 2 h 3

                                                 h 1 A 1  h 2 A 2  h 3 A 3

                                                   1    @  h 2 h 3 @   @  h 3 h 1 @   @  h 1 h 2 @
                             2
                         4: r   ¼ Laplacian of   ¼                 þ             þ
                                                 h 1 h 2 h 3 @u 1  h 1 @u 1  @u 2  h 2 @u 2  @u 3  h 3 @u 3
                        These reduce to the usual expressions in rectangular coordinates if we replace ðu 1 ; u 2 ; u 3 Þ by ðx; y; zÞ,
                     in which case e 1 ; e 2 ; and e 3 are replaced by i, j, and k and h 1 ¼ h 2 ¼ h 3 ¼ 1.
                     SPECIAL CURVILINEAR COORDINATES
                        1. Cylindrical Coordinates ( ;  ; z).  See Fig. 7-13.
                            Transformation equations:

                                                   x ¼   cos  ; y ¼   sin  ; z ¼ z
   165   166   167   168   169   170   171   172   173   174   175