Page 173 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 173

164                                  VECTORS                               [CHAP. 7



                              Angle EOQ ¼ 61:58,using a protractor.  Then vector OQ has magnitude 7.4 mi and direction 61.58
                              north of east.
                          (b) Analytical Determination of Resultant.  From triangle OPQ,denoting the magnitudes of A; B; C by
                              A; B; C,we have by the law of cosines
                                         2
                                             2
                                     2
                                                             2
                                                                 2
                                                                                       ffiffiffi
                                                                                      p
                                    C ¼ A þ B   2AB cos ff OPQ ¼ 3 þ 5   2ð3Þð5Þ cos 1358 ¼ 34 þ 15 2 ¼ 55:21
                              and C ¼ 7:43 (approximately).
                                                   A        C
                                 By the law of sines,   ¼        :  Then
                                                sin ff OQP  sin ff OPQ
                                               A sin ff OPQ
                                                          3ð0:707Þ
                                                                ¼ 0:2855  and   ff OQP ¼ 16835  0
                                                   C        7:43
                                      sin ff OQP ¼       ¼
                                 Thus vector OQ has magnitude 7.43 mi and direction ð458 þ 16835 Þ¼ 61835 north of east.
                                                                                         0
                                                                                  0
                      7.4. Prove that if a and b are non-collinear, then xa þ yb ¼ 0 implies x ¼ y ¼ 0.  Is the set fa; bg
                          linearly independent or linearly dependent?
                              Suppose x 6¼ 0. Then xa þ yb ¼ 0 implies xa ¼ yb or a ¼ ðy=xÞb, i.e., a and b must be parallel to the
                          same line (collinear), contrary to hypothesis.  Thus, x ¼ 0; then yb ¼ 0, from which y ¼ 0.  The set is
                          linearly independent.
                      7.5. If x 1 a þ y 1 b ¼ x 2 a þ y 2 b, where a and b are non-collinear, then x 1 ¼ x 2 and y 1 ¼ y 2 .
                              x 1 a þ y 1 b ¼ x 2 a þ y 2 b can be written
                                         x 1 a þ y 1 b  ðx 2 a þ y 2 bÞ¼ 0  or  ðx 1   x 2 Þa þðy 1   y 2 Þb ¼ 0
                              Hence, by Problem 7.4, x 1   x 2 ¼ 0; y 1   y 2 ¼ 0; or x 1 ¼ x 2 ; y 1 ¼ y 2 :
                              Extensions are possible (see Problem 7.49).

                      7.6. Prove that the diagonals of a parallelogram bisect each  B      b          C
                          other.
                              Let ABCD be the given parallelogram with diagonals intersect-
                          ing at P as shown in Fig. 7-18.                     a           P         a
                              Since BD þ a ¼ b; BD ¼ b   a. Then BP ¼ xðb   aÞ.
                              Since AC ¼ a þ b, AP ¼ yða þ bÞ.
                              But AB ¼ AP þ PB ¼ AP   BP, i.e., a ¼ yða þ bÞ  xðb   aÞ
                          ¼ðx þ yÞa þðy   xÞb.
                                                                             A         b          D
                              Since a and b are non-collinear, we have by Problem 7.5,
                                                       1  and P is the midpoint of     Fig. 7-18
                                                       2
                          x þ y ¼ 1 and y   x ¼ 0, i.e., x ¼ y ¼
                          both diagonals.
                      7.7. Prove that the line joining the midpoints of two sides of a triangle is parallel to the third side and
                          has half its length.
                              From Fig. 7-19, AC þ CB ¼ AB or b þ a ¼ c.
                              Let DE ¼ d be the line joining the midpoints of sides AC and CB.  Then
                                                                      1
                                                                              1
                                                              1
                                                                  1
                                                  d ¼ DC þ CE ¼ b þ a ¼ ðb þ aÞ¼ c
                                                                              2
                                                              2
                                                                  2
                                                                      2
                              Thus, d is parallel to c and has half its length.
                                                                                  q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                                                              2
                                                                                          2
                                                                                     2
                                                                                    A þ A þ A . See Fig.
                      7.8. Prove that the magnitude A of the vector A ¼ A 1 i þ A 2 j þ A 3 k is A ¼  1  2  3
                          7-20.
   168   169   170   171   172   173   174   175   176   177   178