Page 174 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 174

CHAP. 7]                             VECTORS                                    165






                                          C
                                         1 b  1 a
                                      b  2   2      a
                                        D    d    E
                                    A                       B
                                               c
                                             Fig. 7-19                           Fig. 7-20

                              By the Pythagorean theorem,
                                                            2      2     2
                                                         ðOPÞ ¼ðOQÞ þðQPÞ
                                                                                          2
                                                                                   2
                                                                             2
                           where OP denotes the magnitude of vector OP, etc.  Similarly, ðOQÞ ¼ðORÞ þðRQÞ .
                                                                                  q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                      2     2      2     2    2   2   2  2          2   2   2
                                                                                    1   2   3
                              Then ðOPÞ ¼ðORÞ þðRQÞ þðQPÞ or A ¼ A 1 þ A 2 þ A 3 , i.e., A ¼  A þ A þ A .
                      7.9. Determine the vector having initial point Pðx 1 ; y 1 ; z 1 Þ
                           and terminal point Qðx 2 ; y 2 ; z 2 Þ and find its magnitude.
                           See Fig. 7-21.
                              The position vector of P is r 1 ¼ x 1 i þ y 1 j þ z 1 k.
                              The position vector of Q is r 2 ¼ x 2 i þ y 2 j þ z 2 k.
                              r 1 ¼ PQ ¼ r 2 or

                               PQ ¼ r 2   r 1 ¼ðx 2 i þ y 2 j þ z 2 kÞ ðx 1 i þ y 1 j þ z 1 kÞ
                                        ¼ðx 2   x 1 Þi þðy 2   y 1 Þj þðz 2   z 1 Þk

                              Magnitude of PQ ¼ PQ
                                                                                     Fig. 7-21
                                             q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                     2
                                                                      2
                                                              2
                                               ðx 2   x 1 Þ þðy 2   y 1 Þ þðz 2   z 1 Þ :
                                           ¼
                           Note that this is the distance between points P and Q.       A
                                                                                  E            F
                     THE DOT OR SCALAR PRODUCT
                                                                                   G          H   B
                     7.10. Prove that the projection of A on B is equal to A   b, where b is a
                           unit vector in the direction of B.                           Fig. 7-22
                              Through the initial and terminal points of A pass planes perpen-
                           dicular to B at G and H respectively, as in the adjacent Fig. 7-22: then
                               Projection of A on B ¼ GH ¼ EF ¼ A cos   ¼ A   b  B          C


                                                                                        (B + C)
                     7.11. Prove A  ðB þ CÞ¼ A   B þ A   C.  See Fig. 7-23.
                              Let a be a unit vector in the direction of A;then
                           Projection of ðB þ CÞ on A ¼ projection of B on A þ projection
                                       of C on A                               E      F          G  A
                                       ðB þ CÞ  a ¼ B   a þ C   a
                                                                                      Fig. 7-23
   169   170   171   172   173   174   175   176   177   178   179