Page 175 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 175

166                                  VECTORS                               [CHAP. 7



                          Multiplying by A,
                                                      ðB þ CÞ  Aa ¼ B   Aa þ C   Aa
                          and                          ðB þ CÞ  A ¼ B   A þ C   A
                          Then by the commutative law for dot products,
                                                       A  ðB þ CÞ¼ A   B þ A   C
                          and the distributive law is valid.

                     7.12. Prove that ðA þ BÞ  ðC þ DÞ¼ A   C þ A   D þ B   C þ B   D.
                              By Problem 7.11, ðA þ BÞ ðC þ DÞ¼ A  ðC þ DÞþ B  ðC þ DÞ¼ A   C þ A   D þ B   C þ B   D.
                              The ordinary laws of algebra are valid for dot products where the operations are defined.

                     7.13. Evaluate each of the following.
                          ðaÞ i   i ¼jijjij cos 08 ¼ð1Þð1Þð1Þ¼ 1
                          ðbÞ i   k ¼jijjkj cos 908 ¼ð1Þð1Þð0Þ¼ 0
                          ðcÞ k   j ¼jkjjjj cos 908 ¼ð1Þð1Þð0Þ¼ 0
                               j  ð2i   3j þ kÞ¼ 2j   i   3j   j þ j   k ¼ 0   3 þ 0 ¼ 3
                          ðdÞ
                          ðeÞð2i   jÞ  ð3i þ kÞ¼ 2i  ð3i þ kÞ  j  ð3i þ kÞ¼ 6i   i þ 2i   k   3j   i   j   k ¼ 6 þ 0   0   0 ¼ 6
                     7.14. If A ¼ A 1 i þ A 2 j þ A 3 k and B ¼ B 1 i þ B 2 j þ B 3 k, prove that A   B ¼ A 1 B 1 þ A 2 B 2 þ A 3 B 3 .

                                    A   B ¼ðA 1 i þ A 2 j þ A 3 kÞ ðB 1 i þ B 2 j þ B 3 kÞ
                                        ¼ A 1 i  ðB 1 i þ B 2 j þ B 3 kÞþ A 2 j  ðB 1 i þ B 2 j þ B 3 kÞþ A 3 k  ðB 1 i þ B 2 j þ B 3 kÞ
                                        ¼ A 1 B 1 i   i þ A 1 B 2 i   j þ A 1 B 3 i   k þ A 2 B 1 j   i þ A 2 B 2 j   j þ A 2 B 3 j   k
                                          þ A 3 B 1 k   i þ A 3 B 2 k   j þ A 3 B 3 k   k
                                        ¼ A 1 B 1 þ A 2 B 2 þ A 3 B 3
                          since i   j ¼ k   k ¼ 1 and all other dot products are zero.

                                                                  q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                            ffiffiffiffiffiffiffiffiffiffiffi
                                                          p          2    2   2
                                                                    A þ A þ A .
                     7.15. If A ¼ A 1 i þ A 2 j þ A 3 k, show that A ¼  A   A ¼  1  2  3
                                                2
                                                            A   A.
                              A   A ¼ðAÞðAÞ cos 08 ¼ A .  Then A ¼  p ffiffiffiffiffiffiffiffiffiffiffi
                              Also, A   A ¼ðA 1 i þ A 2 j þ A 3 kÞ ðA 1 i þ A 2 j þ A 3 kÞ
                                                                 2   2   2
                                      ¼ðA 1 ÞðA 1 ÞþðA 2 ÞðA 2 Þþ ðA 3 ÞðA 3 Þ¼ A 1 þ A 2 þ A 3
                          By Problem 7.14, taking B ¼ A.
                                             q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                     p ffiffiffiffiffiffiffiffiffiffiffi  2  2  2                                    2
                                              A þ A þ A is the magnitude of A.  Sometimes A   A is written A .
                                               1   2   3
                              Then A ¼  A   A ¼
                     THE CROSS OR VECTOR PRODUCT
                     7.16. Prove A   B ¼ B   A.
                              A   B ¼ C has magnitude AB sin   and direction such that A, B, and C form a right-handed system [Fig.
                          7-24(a)].
                              B   A ¼ D has magnitude BA sin   and direction such that B, A, and D form a right-handed system
                          [Fig. 7-24(b)].
                              Then D has the same magnitude as C but is opposite in direction, i.e., C ¼ D or A   B ¼ B   A.
                              The commutative law for cross products is not valid.

                     7.17. Prove that A  ðB þ CÞ¼ A   B þ A   C for the case where A is perpendicular to B and also
                          to C.
   170   171   172   173   174   175   176   177   178   179   180