Page 180 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 180

CHAP. 7]                             VECTORS                                    171


                     7.29. If A ¼ i þ j, B ¼ 2i   3j þ k, C ¼ 4j   3k, find  (a) ðA   BÞ  C,(b) A  ðB   CÞ.

                                         j                                   j
                                      i     k                            i      k

                                         1  0   ¼ i   j   5k.  Then ðA   BÞ  C ¼ 1  1  5   ¼ 23i þ 3j þ 4k:

                           ðaÞ  A   B ¼ 1

                                      2  3  1                            0  4    3


                                      i    j  k                             i    j  k

                              B   C ¼ 2  3   1   ¼ 5i þ 6j þ 8k.  Then A  ðB   CÞ¼ 11  0   ¼ 8i   8j þ k:




                           ðbÞ

                                       0  4   3                               56  8
                              It can be proved that, in general, ðA   BÞ  C 6¼ A  ðB   CÞ.
                     DERIVATIVES

                                                                                 2          2
                                 3          2t                 dr        dr     d r
                     7.30. If r ¼ðt þ 2tÞi   3e  j þ 2 sin 5tk, find  (a)  ;  ðbÞ      ;  ðcÞ  ;  ðdÞ      d r    at t ¼ 0 and
                                                                        dt
                                                               dt                dt 2       2
                           give a possible physical significance.                           dt
                               dr  d  3      d    2t   d           2        2t
                               dt  dt       dt        dt
                           ðaÞ   ¼  ðt þ 2tÞi þ  ð 3e  Þj þ  ð2 sin 5tÞk ¼ð3t þ 2Þi þ 6e  j þ 10 cos 5tk
                              At t ¼ 0, dr=dt ¼ 2i þ 6j þ 10k
                                              q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                                140 ¼ 2 35 at t ¼ 0:
                              From ðaÞ;           2   2     2  p ffiffiffiffiffiffiffiffi  p ffiffiffiffiffi
                           ðbÞ         jdr=dtj¼  ð2Þ þð6Þ þð10Þ ¼
                               2
                              d r  d       d   2        2t                  2t
                                      dr
                           ðcÞ  2  ¼     ¼  fð3t þ 2Þi þ 6e  j þ 10 cos 5tkg¼ 6ti   12e  j   50 sin 5tk
                               dt  dt dt   dt
                                          2
                                      2
                              At t ¼ 0, d r=dt ¼ 12j.
                                         2
                                            2
                           ðdÞ From ðcÞ;  jd r=dt j¼ 12  at t ¼ 0:
                              If t represents time, these represent respectively the velocity, magnitude of the velocity, acceleration,
                                                                                                   3
                           and magnitude of the acceleration at t ¼ 0ofa particle moving along the space curve x ¼ t þ 2t,
                           y ¼ 3e  2t , z ¼ 2 sin 5t.
                                    d           dB   dA
                     7.31. Prove that  ðA   BÞ¼ A    þ    B, where A and B are differentiable functions of u.
                                    du          du   du
                                    d            ðA þ  AÞ ðB þ  BÞ  A   B
                           Method 1:  ðA   BÞ¼ lim
                                    du        u!0          u
                                                 A    B þ  A   B þ  A    B
                                           ¼ lim
                                              u!0         u
                                                     B   A      A          dB  dA

                                           ¼ lim  A    þ     B þ     B ¼ A    þ     B
                                              u!0    u    u     u          du  du
                           Method 2: Let A ¼ A 1 i þ A 2 j þ A 3 k, B þ B 1 i þ B 2 j þ B 3 k.  Then
                                       d        d
                                       du  ðA   BÞ¼  du  ðA 1 B 1 þ A 2 B 2 þ A 3 B 3 Þ

                                                   dB 1   dB 2   dB 3   dA 1  dA 2   dA 3
                                              ¼ A 1   þ A 2  þ A 3   þ     B 1 þ  B 2 þ  B 3
                                                    du    du     du     du     du     du
                                                  dB  dA
                                                           B
                                              ¼ A    þ
                                                  du   du
   175   176   177   178   179   180   181   182   183   184   185