Page 183 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 183

174                                  VECTORS                               [CHAP. 7



                          Another method:
                                          2
                                                   2
                                               2
                                          @    @    @    @ 2         @ 2          @ 2
                                      2                     2    3       2     3       2    3
                                     r   ¼  2  þ  2  þ  2  ¼  2  ð2x y   xz Þþ  2  ð2x y   xz Þþ  2  ð2x y   xz Þ
                                          @x  @y   @z  @x            @y           @z
                                        ¼ 4y   6xz
                     7.39. Prove div curl A ¼ 0.

                                                      i    j
                                                               k


                              div curl A ¼r   ðr   AÞ¼ r   @=@x @=@y @=@z



                                                     A 1  A 2  A 3

                                            @A 3  @A 2  @A 1  @A 3  @A 2  @A 1
                                                                            k
                                            @y   @z     @z   @x     @x   @y
                                      ¼r            i þ         j þ
                                        @    @A 3  @A 2    @    @A 1  @A 3    @    @A 2  @A 1
                                      ¼            þ             þ
                                       @x  @y   @z   @y  @z  @x   @z  @x  @y
                                        2     2    2     2    2    2
                                       @ A 3  @ A 2  @ A 1  @ A 3  @ A 2  @ A 1
                                       @x @y  @x @z  @y @z  @y @x  @z @x  @z @y
                                      ¼          þ          þ
                                      ¼ 0
                          assuming that A has continuous second partial derivatives so that the order of differentiation is immaterial.
                     JACOBIANS AND CURVLINEAR COORDINATES
                                 2
                     7.40. Find ds in (a) cylindrical and  (b) spherical coordinates and determine the scale factors.
                          (a) Method 1:
                                                      x ¼   cos  ;  y ¼   sin  ; ¼ z
                                         dx ¼   sin   d  þ cos   d ;  dy ¼   cos   d  þ sin   d ;  dz ¼ dz

                                                  2
                                             2
                                                      2
                                                          2
                              Then          ds ¼ dx þ dy þ dz ¼ð   sin   d  þ cos   d Þ 2
                                                                 2    2
                                                þð  cos   d  þ sin   d Þ þðdzÞ
                                                   2   2  2     2  2   2   2  2   2  2
                                              ¼ðd Þ þ   ðd Þ þðdzÞ ¼ h 1 ðd Þ þ h 2 ðd Þ þ d 3 ðdzÞ
                              and h 1 ¼ h   ¼ 1, h 2 ¼ h   ¼  , h 3 ¼ h z ¼ 1are the scale factors.
                              Method 2:  The position vector is r ¼   cos  i þ   sin  j þ zk.  Then
                                                @r   @r    @r
                                               @     @     @z
                                            dr ¼  d  þ  d  þ  dz
                                              ¼ðcos  i þ sin  jÞ d  þð   sin  i þ   cos  jÞ d  þ k dz
                                              ¼ðcos   d      sin   d Þi þðsin   d  þ   cos   d Þj þ k dz
                                     2                       2                  2    2
                              Thus ds ¼ dr   dr ¼ðcos   d      sin   d Þ þðsin   d  þ   cos   d Þ þðdzÞ
                                                 2   2  2     2
                                            ¼ðd Þ þ   ðd Þ þðdzÞ
                                                x ¼ r sin   cos  ;  y ¼ r sin   sin  ;  z ¼ r cos
                          ðbÞ
                              Then            dx ¼ r sin   sin   d  þ r cos   cos   d  þ sin   cos   dr
                                              dy ¼ r sin   cos   d  þ r cos   sin   d  þ sin   sin   dr
                                              dz ¼ r sin   d  þ cos   dr
   178   179   180   181   182   183   184   185   186   187   188