Page 185 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 185

176                                  VECTORS                               [CHAP. 7



                              where A ¼ A 1 e 1 þ A 2 e 2 þ A 3 e 3 .
                                      1      @    ð Þð1Þ @     @    ð1Þð1Þ @     @    ð1Þð Þ @
                               2
                                   ð1Þð Þð1Þ @   ð1Þ  @   @   ð Þ  @   @z  ð1Þ  @z
                          ðcÞ  r   ¼                  þ           þ
                                                      2
                                                 2
                                   1 @     @     1 @    @

                                     @   @      @    @z
                                  ¼          þ  2  2  þ  2
                     MISCELLANEOUS PROBLEMS
                                              0
                                                           p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                             f ðrÞ            2   2  2      0
                                                             x þ y þ z and f ðrÞ¼ df =dr is assumed to exist.
                                              r
                     7.43. Prove that grad f ðrÞ¼  r, where r ¼
                                             @       @      @
                                                              f ðrÞ k
                                             @x     @y      @z
                              grad f ðrÞ¼ r f ðrÞ¼  f ðrÞ i þ  f ðrÞ j þ
                                          @r      @r      @r
                                                            k
                                       0        0       0
                                          @x      @y      @z
                                     ¼ f ðrÞ  i þ f ðrÞ  j þ f ðrÞ
                                          x      y       z    0              0
                                       0       0      0      f ðrÞ          f ðrÞ  r
                                          r      r       r    r              r
                                     ¼ f ðrÞ  i þ f ðrÞ  j þ f ðrÞ k ¼  ðxi þ yj þ zkÞ¼
                          Another method:  In orthogonal curvilinear coordinates u 1 ; u 2 ; u 3 ,we have
                                                         1 @     1 @     1 @
                                                                             e 3
                                                   r  ¼      e 1 þ   e 2 þ                           ð1Þ
                                                        h 1 @u 1  h 2 @u 2  h 3 @u 3
                              If, in particular, we use spherical coordinates, we have u 1 ¼ r; u 2 ¼  ; u 3 ¼  . Then letting   ¼ f ðrÞ,a
                          function of r alone, the last two terms on the right of (1)are zero.  Hence, we have, on observing that
                          e 1 ¼ r=r and h 1 ¼ 1, the result
                                                              1 @f ðrÞ r  f ðrÞ
                                                                       0
                                                                          r
                                                              1 @r r   r
                                                       r f ðrÞ¼     ¼                                ð2Þ
                     7.44. (a) Find the Laplacian of   ¼ f ðrÞ.(b) Prove that   ¼ 1=r is a solution of Laplace’s equation
                            2
                          r   ¼ 0.
                          (a)By Problem 7.43,
                                                                     0
                                                                    f ðrÞ
                                                                        r
                                                                     r
                                                         r  ¼r f ðrÞ¼
                                 By Problem 7.35, assuming that f ðrÞ has continuous second partial derivatives, we have

                                                                     0
                                                     2              f ðrÞ
                                                                     r
                                       Laplacian of   ¼r   ¼r   ðr Þ¼ r    r

                                                                        1 d
                                                       0       0              0        0
                                                      f ðrÞ   f ðrÞ          f ðrÞ    f ðrÞ
                                                       r        r       r dr  r        r
                                                  ¼r         r þ  ðr   rÞ¼       r   r þ  ð3Þ
                                                      00   0       0         2
                                                    rf ðrÞ  f ðrÞ 2  3 f ðrÞ
                                                                         00     0
                                                        r          r         r
                                                  ¼     3    r þ      ¼ f ðrÞþ  f ðrÞ
                              Another method:  In spherical coordinates, we have
                                                                                    2
                                                 1 @     2 @U     1  @     @U    1  @ U
                                             2
                                                 r @r   @r   r sin   @   @   r sin   @
                                            r U ¼  2  r    þ  2      sin    þ  2  2  2
                              If U ¼ f ðrÞ,the last two terms on the right are zero and we find
                                                    2     1 d  2  0   00   2  0
                                                         r dr              r
                                                  r f ðrÞ¼  2  ðr f ðrÞÞ ¼ f ðrÞþ  f ðrÞ
   180   181   182   183   184   185   186   187   188   189   190