Page 188 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 188

CHAP. 7]                             VECTORS                                    179


                     7.64.  Find the shortest distance from the point ð3; 2; 1Þ to the plane determine by ð1; 1; 0Þ; ð3;  1; 1Þ; ð 1; 0; 2Þ.
                           Ans.2

                     TRIPLE PRODUCTS
                     7.65.  If A ¼ 2i þ j   3k; B ¼ i   2j þ k; C ¼ i þ j   4, find (a) A  ðB   CÞ,(b) C  ðA   BÞ,(c) A  ðB   CÞ,
                           (d) ðA   BÞ  C.  Ans.  (a) 20,  (b) 20,  (c)8i   19j   k;  ðdÞ 25i   15j   10k
                     7.66.  Prove that ðaÞ  A  ðB   CÞ¼ B  ðC   AÞ¼ C  ðA   BÞ
                                       A  ðB   CÞ¼ BðA   CÞ  CðA   BÞ.
                                   ðbÞ
                     7.67.  Find an equation for the plane passing through ð2;  1;  2Þ; ð 1; 2;  3Þ; ð4; 1; 0Þ.
                           Ans.  2x þ y   3z ¼ 9
                     7.68.  Find the volume of the tetrahedron with vertices at ð2; 1; 1Þ; ð1;  1; 2Þ; ð0; 1;  1Þ; ð1;  2; 1Þ.
                           Ans.  4
                               3
                     7.69.  Prove that ðA   BÞ ðC   DÞþðB   CÞ  ðA   DÞþ ðC   AÞ ðB   DÞ¼ 0:

                     DERIVATIVES
                                                                       t
                                                              t
                                                                               t
                     7.70.  A particle moves along the space curve r ¼ e cos t i þ e sin t j þ e k.  Find the magnitude of the
                                                                         ffiffiffi       ffiffiffi
                                                                        p   t     p   t
                           (a)velocity and  (b)acceleration at any time t.  Ans.(a)  3 e ;  ðbÞ  5 e
                                   d            dB  dA
                     7.71.  Prove that  ðA   BÞ¼ A    þ    B where A and B are differentiable functions of u.
                                   du           du  du
                                                                    2
                                                                         3
                     7.72.  Find a unit vector tangent to the space curve x ¼ t; y ¼ t ; z ¼ t at the point where t ¼ 1.
                                          ffiffiffiffiffi
                                         p
                           Ans.  ði þ 2j þ 3kÞ= 14
                     7.73.  If r ¼ a cos !t þ b sin !t, where a and b are any constant non-collinear vectors and ! is a constant scalar,
                                                          2
                                         dr              d r  2
                           prove that  (a) r ¼  ¼ !ða   bÞ;  ðbÞ;  þ ! r ¼ 0.
                                          dr             dt 2
                                                                                           @ 2
                                                                           3
                                  2
                     7.74.  If  A ¼ x i   yj þ xzk,  B ¼ yi þ xj   xyzk  and  C ¼ i   yj þ x zk,  find  (a)  ðA   BÞ  and
                           (b) d½A  ðB   Cފ at the point ð1;  1; 2Þ:  Ans.(a)  4i þ 8j;  ðbÞ 8 dx  @x @y

                                                     2
                                                     @ B  2                          p ffiffiffi
                                            2 2
                                 2
                                      2
                     7.75.  If R ¼ x yi   2y zj þ xy z k, find         @ R    at the point ð2; 1;  2Þ.  Ans.16 5
                                                    @x 2  2
                                                         @y
                     GRADIENT, DIVERGENCE, AND CURL
                     7.76.  If U; V; A; B have continuous partial derivatives prove that:
                           (a) rðU þ VÞ¼ rU þrV;  ðbÞr   ðA þ BÞ¼r   A þr   B;  ðcÞr   ðA þ BÞ¼r   A þr   B.
                                                 2
                                                      2
                                                           2
                     7.77.  If   ¼ xy þ yz þ zx and A ¼ x yi þ y zj þ z xk, find  (a) A  r ;  ðbÞ  r  A; and (c) ðr Þ  A at the
                           point ð3;  1; 2Þ.  Ans:  ðaÞ 25;  ðbÞ 2;  ðcÞ 56i   30j þ 47k
                                       2
                     7.78.  Show that r  ðr rÞ¼ 0 where r ¼ xi þ yj þ zk and r ¼jrj.
                     7.79.  Prove:  (a) r  ðUAÞ¼ðrUÞ  A þ Uðr   AÞ;  ðbÞr   ðA   BÞ¼ B  ðr   AÞ  A  ðr   BÞ.
                     7.80.  Prove that curl grad u ¼ 0, stating appropriate conditions on U.
                                                              2 4
                                                    2
                     7.81.  Find a unit normal to the surface x y   2xz þ 2y z ¼ 10 at the point ð2; 1;  1Þ.
                                            p ffiffiffiffiffi
                           Ans:   ð3i þ 4j   6kÞ= 61
                                  2
                     7.82.  If A ¼ 3xz i   yzj þðx þ 2zÞk, find curl curl A.  Ans:    6xi þð6z   1Þk
                                                   2
                     7.83.  (a)Prove that r  ðr   AÞ¼  r A þrðr   AÞ.(b)Verify the result in (a)if A is given as in Problem 7.82.
   183   184   185   186   187   188   189   190   191   192   193