Page 184 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 184

CHAP. 7]                             VECTORS                                    175

                                                                           2
                                                                       2
                                                                                 2
                                                                              2
                                                         2
                                                              2
                                              2
                                                    2
                                                                    2
                              and          ðdsÞ ¼ðdxÞ þðdyÞ þðdzÞ ¼ðdrÞ þ r ðd Þ þ r sin   ðd Þ 2
                                  The scale factors are h 1 ¼ h r ¼ 1; h 2 ¼ h   ¼ r; h 3 ¼ h   ¼ r sin  .
                     7.41. Find the volume element dV in  (a) cylindrical and  (b) spherical coordinates and sketch.
                              The volume element in orthogonal curvilinear coordinates u 1 ; u 2 ; u 3 is

                                                                     @ðx; y; zÞ

                                               dV ¼ h 1 h 2 h 3 du 1 du 2 du 3 ¼  du 1 ; du 2 du 3

                                                                  @ðu 1 ; u 2 ; u 3 Þ
                           (a)Incylindrical coordinates, u 1 ¼  ; u 2 ¼  ; u 3 ¼ z; h 1 ¼ 1; h 2 ¼  ; h 3 ¼ 1 [see Problem 7.40(a)].  Then
                                                    dV ¼ð1Þð Þð1Þ d  d  dz ¼   d  d  dz
                                  This can also be observed directly from Fig. 7-30(a)below.























                                                           Fig. 7-30

                           (b)Inspherical coordinates, u 1 ¼ r; u 2 ¼  ; u 3 ¼  ; h 1 ¼ 1; h 2 ¼ r; h 3 ¼ r sin   [see Problem 7.40(b)]. Then
                                                                       2
                                                 dV ¼ð1ÞðrÞðr sin  Þ dr d  d  ¼ r sin   dr d  d
                                  This can also be observed directly from Fig. 7-30(b) above.


                                                                                  2
                     7.42. Express in cylindrical coordinates:  (a) grad  ;  ðbÞ div A;  ðcÞr  .
                              Let u 1 ¼  ; u 2 ¼  ; u 3 ¼ z; h 1 ¼ 1; h 2 ¼  ; h 3 ¼ 1 [see Problem 7.40(a)] in the results 1, 2, and 4 on Pages
                           174 and 175. Then
                                          1 @    1 @     1 @    @     1 @    @
                                                                               e 3
                           ðaÞ  grad   ¼r  ¼  e 1 þ  e 2 þ  e 3 ¼  e 1 þ  e 2 þ
                                          1 @      @     1 @z   @       @    @z
                              where e 1 ; e 2 ; e 3 are the unit vectors in the directions of increasing  ;  ; z, respectively.

                                             1    @          @          @
                                          ð1Þð Þð1Þ @       @          @z
                           ðbÞ  div A ¼r   A ¼     ð ð Þð1ÞA 1 Þ þ  ðð1Þð1ÞA 2 Þþ  ðð1Þð ÞA 3 Þ
                                          1 @       @A 2  @A 3

                                            @        @   @z
                                         ¼    ð A 1 Þþ  þ
   179   180   181   182   183   184   185   186   187   188   189