Page 182 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 182

CHAP. 7]                             VECTORS                                    173

                                                  3  4   2 3 3   4 2 3
                           ðdÞ div ð AÞ¼r   ð AÞ¼r   ðx yz i   x y z j þ 2x y z kÞ
                                       @  3  4  @   2 3 3  @  4 2 3
                                       @x       @y        @z
                                     ¼   ðx yz Þþ  ð x y z Þþ  ð2x y z Þ
                                           4
                                        2
                                                      4 2 2
                                               2 2 3
                                     ¼ 3x yz   3x y z þ 6x y z
                                                    3  4   2 3 3   4 2 3
                           ðeÞ  curl ð AÞ¼r   ð AÞ¼ r   ðx yz i   x y z j þ 2x y z kÞ

                                         i      j      k


                                     ¼ @=@x    @=@y

                                                      @=@z
                                          3  4  2 3 3
                                          x yz   x y z  2x y z
                                                       4 2 3
                                         4  3   2 3 2    3  3   3 2 3    3 3  3 4
                                     ¼ð4x yz   3x y z Þi þð4x yz   8x y z Þj  ð2xy z þ x z Þk
                     7.35. Prove r  ð AÞ¼ ðr Þ  A þ  ðr   AÞ.
                              r  ð AÞ¼r   ð A 1 i þ  A 2 j þ  A 3 kÞ
                                      @       @       @
                                      @x      @y      @z
                                    ¼   ð A 1 Þþ  ð A 2 Þþ  ð A 3 Þ
                                      @     @     @       @A 1  @A 2  @A 3
                                                    A 3 þ
                                    ¼   A 1 þ  A 2 þ         þ   þ
                                      @x    @y    @z      @x   @y  @z
                                       @   @    @

                                    ¼    i þ  j þ  k  ðA 1 i þ A 2 j þ A 3 kÞ
                                       @x   @y  @z
                                          @   @    @

                                      þ    i þ  j þ  k  ðA 1 i þ A 2 j þ A 3 kÞ
                                          @x  @y  @z
                                    ¼ðr Þ  A þ  ðr   AÞ
                     7.36. Express a formula for the tangent plane to the surface  ðx; y; zÞ¼ 0at one of its points
                           P 0 ðx 0 ; y 0 ; z 0 Þ.
                           Ans:  ðr Þ  ðr   r 0 Þ¼ 0
                                   0
                                                                  2
                                                        2
                     7.37. Find a unit normal to the surface 2x þ 4yz   5z ¼ 10 at the point Pð3;  1; 2Þ.
                              By Problem 7.36, a vector normal to the surface is
                                                 2
                                         2
                                     rð2x þ 4yz   5z Þ¼ 4xi þ 4zj þð4y   10zÞk ¼ 12i þ 8j   24k  at  ð3;  1; 2Þ
                                                                 12i þ 8j   24k  3i þ 2j   6k
                              Then a unit normal to the surface at P is  q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼  :
                                                                  2    2     2      7
                                                               ð12Þ þð8Þ þð 24Þ
                                                                3i þ 2j   6k
                              Another unit normal to the surface at P is     :
                                                                    7


                                  2
                                                              2
                                        3
                     7.38. If   ¼ 2x y   xz , find  (a) r  and  (b) r  .
                                   @   @    @          3    2     2
                                              k ¼ð4xy   z Þi þ 2x j   3xz k
                                   @x  @y   @z
                           ðaÞ  r  ¼  i þ  j þ
                                                        @          @      @
                               2                               3      2         2
                           ðbÞ  r   ¼ Laplacian of   ¼r   r  ¼  ð4xy   z Þþ  ð2x Þþ  ð 3xz Þ¼ 4y   6xz
                                                       @x         @y      @z
   177   178   179   180   181   182   183   184   185   186   187