Page 178 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 178

CHAP. 7]                             VECTORS                                    169


                     TRIPLE PRODUCTS
                     7.23. Show that A  ðB   CÞ is in absolute value equal to the volume
                           of a parallelepiped with sides A, B, and C. See Fig. 7-28.
                              Let n be a unit normal to parallelogram I, having the direction of
                           B   C, and let h be the height of the terminal point of A above the
                           parallelogram I.                                             Fig. 7-28

                                          Volume of a parallelepiped ¼ðheight hÞðarea of parallelogram IÞ
                                                              ¼ðA   nÞðjB   CjÞ
                                                              ¼ A  fjB   Cjng¼ A  ðB   CÞ
                              If A, B and C do not form a right-handed system, A   n < 0 and the volume =jA  ðB   CÞj.


                     7.24. If A ¼ A 1 i þ A 2 j þ A 3 k, B ¼ B 1 i þ B 2 j þ B 3 k, C ¼ C 1 i þ C 2 j þ C 3 k show that


                                                                  A 1  A 2
                                                                          A 3
                                                      A  ðB   CÞ¼ B 1  B 2  B 3


                                                                  C 1  C 2  C 3


                                                i  j  k


                                 A  ðB   CÞ¼ A   B 1  B 2  B 3



                                              C 1  C 2  C 3
                                         ¼ðA 1 i þ A 2 j þ A 3 kÞ ½ðB 2 C 3   B 3 C 2 Þi þðB 3 C 1   B 1 C 3 Þj þðB 1 C 2   B 2 C 1 ÞkŠ

                                                                                         A 1  A 2
                                                                                              A 3

                                         ¼ A 1 ðB 2 C 3   B 3 C 2 Þþ A 2 ðB 3 C 1   B 1 C 3 Þþ A 3 ðB 1 C 2   B 2 C 1 Þ¼ B 1  B 2  B 3  :



                                                                                       C 1  C 2  C 3
                     7.25. Find the volume of a parallelepiped with sides A ¼ 3i   j; B ¼ j þ 2k; C ¼ i þ 5j þ 4k.

                                                                                   3   1
                                                                                         0

                                                                                      1

                              By Problems 7.23 and 7.24, volume of parallelepiped ¼jA  ðB   CÞj ¼ j 0    2  j

                                                                                     1  5  4
                                                                     ¼j   20j¼ 20:
                     7.26. Prove that A  ðB   CÞ¼ðA   BÞ  C, i.e., the dot and cross can be interchanged.

                                                        A 1  A 2                           C 1  C 2
                                                             A 3                                C 3
                                                             B 3  ;

                              By Problem 7.24: A  ðB   CÞ¼ B 1  B 2  ðA   BÞ  C ¼ C  ðA   BÞ¼ A 1  A 2  A 3



                                                      C 1  C 2  C 3                      B 1  B 2  B 3

                              Since the two determinants are equal, the required result follows.
                     7.27. Let r 1 ¼ x 1 i þ y 1 j þ z 1 k, r 2 ¼ x 2 i þ y 2 j þ z 2 k and r 3 ¼ x 3 i þ y 3 j þ z 3 k be the position vectors of
                           points P 1 ðx 1 ; y 1 ; z 1 Þ, P 2 ðx 2 ; y x ; z 2 Þ and P 3 ðx 3 ; y 3 ; z 3 Þ.  Find an equation for the plane passing
                           through P 1 , P 2 ; and P 3 .  See Fig. 7-29.
                              We assume that P 1 , P 2 , and P 3 do not lie in the same straight line; hence, they determine a plane.
                              Let r ¼ xi þ yj þ zk denote the position vectors of any point Pðx; y; zÞ in the plane. Consider vectors
                           P 1 P 2 ¼ r 2   r 1 , P 1 P 3 ¼ r 3   r 1 and P 1 P ¼ r   r 1 which all lie in the plane. Then
                                                         P 1 P   P 1 P 2   P 1 P 3 ¼ 0
   173   174   175   176   177   178   179   180   181   182   183