Page 179 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 179

170                                  VECTORS                               [CHAP. 7


















                                                           Fig. 7-29


                          or                         ðr   r 1 Þ ðr 2   r 1 Þ  ðr 3   r 1 Þ¼ 0

                          In terms of rectangular coordinates this becomes


                                        ½ðx   x 1 Þi þðy   y 1 Þj þðz   z 1 ÞkŠ ½ðx 2   x 1 Þi þðy 2   y 1 Þj þðz 2   z 1 ÞkŠ
                                                ½ðx 3   x 1 Þi þðy 3   y 1 Þj þðz 3   z 1 Þkм 0




                                              x   x 1  y   y 1

                                                           z   z 1

                                                           z 2   z 1   ¼ 0
                                             x 2   x 1  y 2   y 1
                          or, using Problem 7.24,


                                             x 3   x 1  y 3   y 1  z 3   z 1
                     7.28. Find an equation for the plane passing through the points P 1 ð3; 1;  2Þ, P 2 ð 1; 2; 4Þ, P 3 ð2;  1; 1Þ.
                              The positions vectors of P 1 ; P 2 ; P 3 and any point Pðx; y; zÞ on the plane are respectively

                                         r 1 ¼ 3i þ j   2k; r 2 ¼ i þ 2j þ 4k; r 3 ¼ 2i   j þ k; r ¼ xi þ jj þ zk

                              Then PP 1 ¼ r   r 1 , P 2 P 1 ¼ r 2   r 1 , P 3 P 1 ¼ r 3   r 1 ,all lie in the required plane and so the required
                          equation is ðr   r 1 Þ ðr 2   r 1 Þ  ðr 3   r 1 Þ¼ 0, i.e.,

                                         fðx   3Þi þðy   1Þj þðz þ 2Þkg f 4i þ j þ 6kg f i   2j þ 3kg¼ 0
                                         fðx   3Þi þðy   1Þj þðz þ 2Þkg f15i þ 6j þ 9kg¼ 0




                                          15ðx   3Þþ 6ðy   1Þþ 9ðz þ 2Þ¼ 0  or  5x   2y þ 3z ¼ 11

                          Another method:  By Problem 7.27, the required equation is


                                             x   3  y   1
                                                          z þ 2


                                              1   3  2   1  4 þ 2 ¼ 0  or  5x þ 2y þ 3z ¼ 11

                                              2   3   1   11 þ 2
   174   175   176   177   178   179   180   181   182   183   184