Page 177 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 177

168                                  VECTORS                               [CHAP. 7



                          and the distributive law holds.  Multiplying by  1, using Problem 7.16, this becomes ðB þ CÞ  A ¼
                          B   A þ C   A. Note that the order of factors in cross products is important. The usual laws of algebra
                          apply only if proper order is maintained.



                                                                                         i  j   k


                                                                                                   .

                     7.19. (a)If A ¼ A 1 i þ A 2 j þ A 3 k and B ¼ B 1 i þ B 2 j þ B 3 k, prove that A   B ¼ A 1  A 2  A 3


                                                                                        B 1  B 2  B 3
                                  A   B ¼ðA 1 i þ A 2 j þ A 3 kÞ ðB 1 i þ B 2 j þ B 3 kÞ
                                       ¼ A 1 i  ðB 1 i þ B 2 j þ B 3 kÞþ A 2 j  ðB 1 i þ B 2 j þ B 3 kÞþ A 3 k  ðB 1 i þ B 2 j þ B 3 kÞ
                                       ¼ A 1 B 1 i   i þ A 1 B 2 i   j þ A 1 B 3 i   k þ A 2 B 1 j   i þ A 2 B 2 j   j þ A 2 B 3 j   k
                                         þ A 3 B 1 k   i þ A 3 B 2 k   j þ A 3 B 3 k   k

                                                                                  i  j
                                                                                         k


                                       ¼ðA 2 B 3   A 3 B 2 Þi þðA 3 B 1   A 1 B 3 Þj þðA 1 B 2   A 2 B 1 Þk ¼ A 1  A 2  A 3


                                                                                 B 1  B 2  B 3

                          (b)Use the determinant representation to prove the result of Problem 7.18.
                     7.20. If A ¼ 3i   j þ 2k and B ¼ 2i þ 3j   k, find A   B.

                                                     j
                                                  i      k

                                                                1
                                                                   2     3    2       3  1
                                          A   B ¼ 3  1   2   ¼ i         j       þ k




                                                               3   1     2  1     2  3
                                                   2  3   1
                                                            ¼ 5i þ 7j þ 11k
                     7.21. Prove that the area of a parallelogram with sides A and B is jA   Bj. See Fig. 7-27.
                                    Area of parallelogram ¼ hjBj
                                                    ¼jAj sin  jBj
                                                    ¼jA   Bj
                                                                            A     h
                              Note that the area of the triangle with sides A and
                              1
                          B ¼ jA   Bj.
                              2
                                                                                    B
                                                                                     Fig. 7-27
                     7.22. Find the area of the triangle with vertices at
                          Pð2; 3; 5Þ; Qð4; 2;  1Þ; Rð3; 6; 4Þ.
                               PQ ¼ð4   2Þi þð2   3Þj þð 1   5Þk ¼ 2i   j   6k
                               PR ¼ð3   2Þi þð6   3Þj þð4   5Þk ¼ i þ 3j   k

                                         1          1
                                         2          2
                           Area of triangle ¼ jPQ   PRj¼ jð2i   j6kÞ  ði þ 3j   kÞj

                                               j
                                           i      k

                                                       1
                                         1
                                         2             2
                                       ¼      2  1  6    ¼ j19i   4j þ 7kj

                                               1  3   1
                                          q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                         1    2     2    2  1  p ffiffiffiffiffiffiffiffi
                                                              426
                                         2                  2
                                       ¼   ð19Þ þð 4Þ þð7Þ ¼
   172   173   174   175   176   177   178   179   180   181   182