Page 294 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 294

CHAP. 11]                         INFINITE SERIES                               285


                                                         n       2                2

                                                      ð 1Þ ðn þ 1Þ          ðn þ 1Þðn þ 1Þ
                                         lim     u nþ1           n þ 1     ¼ lim       ¼ 1
                                                                             2
                                                  ¼ lim    2       n 1   n!1 ðn þ 2n þ 2Þn
                                         n!1 u n  n!1 ðn þ 1Þ þ 1 ð 1Þ  n

                              and the ratio test fails. By using other tests [see Problem 11.19(a)], the series is seen to be convergent.
                     MISCELLANEOUS TESTS
                                                     2
                                                             4
                                                                  5
                                                          3
                     11.22. Test for convergence 1 þ 2r þ r þ 2r þ r þ 2r þ     where  (a) r ¼ 2=3,  (b) r ¼ 2=3,
                           (c) r ¼ 4=3.


                                                                      1
                              Here the ratio test is inapplicable, since     u nþ1    ¼ 2jrj or jrj depending on whether n is odd or even.
                                                                      2
                                                            u n
                              However, using the nth root test, we have
                                                         (
                                                              n
                                                                  n
                                                           n
                                                          p ffiffiffiffiffiffiffiffiffi  p ffiffiffi
                                                   p ffiffiffiffiffiffiffiffi          if n is odd
                                                   n        2jr j ¼  2 jrj
                                                             n
                                                    ju n j ¼
                                                          p ffiffiffiffiffiffiffi
                                                           n           if n is even
                                                            jr j ¼jrj
                                   p ffiffiffiffiffiffiffiffi      1=n
                           Then lim  n  ju n j ¼jrj (since lim 2  ¼ 1).
                               n!1             n!1
                              Thus, if jrj < 1the series converges, and if jrj > 1the series diverges.
                              Hence, the series converges for cases (a) and (b), and diverges in case (c).
                                             1     1   4   1   4   7
                                               2        2          2                       2
                     11.23. Test for convergence  þ     þ          þ    þ  1   4   7 ... ð3n   2Þ  þ    .
                                             3     3   6   3   6   9        3   6   9 ... ð3nÞ
                                                                    2
                                                             3n þ 1

                              The ratio test fails since lim     u nþ1    ¼ lim  ¼ 1.  However, by Raabe’s test,
                                                         n!1 3n þ 3
                                                n!1 u n
                                                                  (          )
                                                                             2
                                                                       3n þ 1    4

                                                                                  > 1
                                                       u nþ1

                                              lim n 1       ¼ lim n 1          ¼
                                                                       3n þ 3    3
                                              n!1      u n    n!1
                           and so the series converges.
                                               2        2          2                       2
                                             1     1   3   1   3   5      1   3   5 ... ð2n   1Þ
                     11.24. Test for convergence  þ     þ          þ    þ                  þ    .
                                             2     2   4     24t            2   4   6 ... ð2nÞ
                                                                    2

                                                             2n þ 1

                              The ratio test fails since lim     u nþ1    ¼ lim  ¼ 1. Also, Raabe’s test fails since

                                                n!1 u n     n!1 2n þ 2
                                                                   (           )
                                                                               2
                                                                        2n þ 1

                                                           u nþ1                ¼ 1
                                                lim n 1      ¼ lim n 1
                                                                        2n þ 2
                                               n!1       u n   n!1
                              However, using long division,
                                                     2
                                               2n þ 1     1   5   4=n      1
                                                                             c n
                                          u nþ1                                 where jc n j < P
                                            ¼        ¼ 1   þ  2       ¼ 1   þ  2
                                               2n þ 2     n  4n þ 8n þ 4   n  n
                                         u n
                           so that the series diverges by Gauss’ test.
   289   290   291   292   293   294   295   296   297   298   299