Page 296 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 296

CHAP. 11]                         INFINITE SERIES                               287

                                                     1              n        1
                                                     X    1   x þ 2          X        1
                     11.26. For what values of x does (a)           ;    ðbÞ                  converge?
                                                        2n   1 x   1
                                                     n¼1                     n¼1  ðx þ nÞðx þ n   1Þ
                                              n
                                    1   x þ 2                    2n   1 x þ 2      x þ 2

                                             :  Then lim     u nþ1    ¼ lim              if x 6¼ 1;  2:
                                  2n   1 x   1      n!1 u n     n!1 2n þ 1 x   1      x   1
                           ðaÞ  u n ¼                                      ¼



                                                       x þ 2            x þ 2                 x þ 2
                                  Then the series converges if        < 1, diverges if        > 1, and the test fails if        ¼ 1, i.e.,
                                                       x   1            x   1                 x   1
                                   1
                              x ¼  .
                                   2
                                  If x ¼ 1the series diverges.
                                  If x ¼ 2the series converges.
                                                      n
                                                 1
                                                X
                                      1
                                  If x   the series is  2n   1  which converges.
                                                   ð 1Þ
                                      2
                                                n¼1
                                                                                           1
                                                                     1
                                                          x þ 2
                                  Thus, the series converges for        < 1, x ¼  and x ¼ 2, i.e., for x @   .
                                                        x   1
                                                                     2                     2

                                                                          1

                           (b) The ratio test fails since lim     u nþ1    ¼ 1, where u n ¼  :  However, noting that

                                                n!1 u n
                                                                    ðx þ nÞðx þ n   1Þ
                                                         1           1      1
                                                                  x þ n   1  x þ n
                                                                 ¼
                                                   ðx þ nÞðx þ n   1Þ
                              we see that if x 6¼ 0;  1;  2; ... ;  n,

                                                      1   1       1     1            1       1
                                  S n ¼ u 1 þ u 2 þ     þ u n ¼     þ       þ     þ
                                                      x  x þ 1   x þ 1  x þ 2      x þ n   1  x þ n
                                                     1   1
                                                     x  x þ n
                                                   ¼
                              and lim S n ¼ 1=x,provided x 6¼ 0;  1;  2;  3; .. . .
                                 n!1
                                  Then the series converges for all x except x ¼ 0;  1;  2;  3; ... ; and its sum is 1=x.
                     UNIFORM CONVERGENCE
                                                                         2
                     11.27. Find the domain of convergence of ð1   xÞþ xð1   xÞþ x ð1   xÞþ     .
                           Method 1:
                                                                     2
                              Sum of first n terms ¼ S n ðxÞ¼ ð1   xÞþ xð1   xÞþ x ð1   xÞþ     þ x n 1  ð1   xÞ
                                                                  2
                                                               2
                                                   ¼ 1   x þ x   x þ x þ     þ x n 1    x n
                                                   ¼ 1   x n
                                                       n
                              If jxj < 1, lim S n ðxÞ¼ lim ð1   x Þ¼ 1.
                                      n!1      n!1
                              If jxj > 1, lim S n ðxÞ does not exist.
                                      n!1
                              If x ¼ 1; S n ðxÞ¼ 0 and lim S n ðxÞ¼ 0.
                                               n!1
                                                  n
                              If x ¼ 1; S n ðxÞ¼ 1  ð 1Þ and lim S n ðxÞ does not exist.
                                                       n!1
                              Thus, the series converges for jxj < 1 and x ¼ 1, i.e., for  1 < x @ 1.
                           Method 2,using the ratio test.
                              The series converges if x ¼ 1.  If x 6¼ 1 and u n ¼ x n 1 ð1   xÞ,then lim       u nþ1      ¼ lim jxj.

                                                                               n!1 u n  n!1
                              Thus, the series converges if jxj < 1, diverges if jxj > 1. The test fails if jxj¼ 1.  If x ¼ 1, the series
                           converges; if x ¼ 1, the series diverges. Then the series converges for  1 < x @ 1:
                     11.28. Investigate the uniform convergence of the series of Problem 11.27 in the interval
                               1
                                                      1
                                              1
                                      1
                           (a)   < x < ,(b)   @ x @ ,    ðcÞ  :99 @ x @ :99;  ðdÞ  1 < x < 1,
                               2      2       2       2
                           ðeÞ 0 @ x < 2.
   291   292   293   294   295   296   297   298   299   300   301