Page 300 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 300

CHAP. 11]                         INFINITE SERIES                               291

                                          2
                                        nx
                     11.37. Let S n ðxÞ¼ nxe  ; n ¼ 1; 2; 3; ... ; 0 @ x @ 1.
                                                    1          1
                                                   ð          ð
                               Determine whether lim            lim S n ðxÞ dx:
                           ðaÞ                       S n ðxÞ dx ¼
                                               n!1  0         0  n!1
                               Explain the result in (aÞ:
                           ðbÞ
                               ð 1      ð 1   2          2
                                                     1  nx 1
                                                                   n
                                                             1
                                          nxe  nx  dx ¼  e  j 0 ¼ ð1   e Þ:  Then
                           ðaÞ  s n ðxÞ dx ¼         2       2
                               0         0
                                                        1
                                                       ð
                                                                          n
                                                                    1
                                                    lim  S n ðxÞ dx ¼ lim ð1   e Þ¼  1
                                                    n!1  0       n!1  2       2
                                                        2
                                 SðxÞ¼ lim S n ðxÞ¼ lim nxe  nx  ¼ 0; whether x ¼ 0or0 < x @ 1:  Then,
                                       n!1      n!1
                                                             1
                                                            ð
                                                              SðxÞ dx ¼ 0
                                                             0
                                                ð 1      ð 1
                                  It follows that lim  S n ðxÞ dx 6¼  lim S n ðxÞ dx, i.e., the limit cannot be taken under the integral
                              sign.         n!1  0        0  n!1
                           (b) The reason for the result in (a)isthat although the sequence S n ðxÞ converges to 0, it does not converge
                                                                                                ffiffiffiffiffi
                                                                                               p
                              uniformly to 0. To show this, observe that the function nxe  nx 2  has a maximum at x ¼ 1= 2n (by the
                                                                                 q ffiffiffiffiffi
                              usual rules of elementary calculus), the value of this maximum being  1 n e  1=2 .  Hence, as n !1,
                                                                                  2
                              S n ðxÞ cannot be made arbitrarily small for all x and so cannot converge uniformly to 0.
                                       sin nx                           1
                                    1                  ð           1
                                    X                             X
                                           : Prove that  f ðxÞ dx ¼ 2       .
                                        n
                     11.38. Let f ðxÞ¼   3                                  4
                                    n¼1                 0          n¼1  ð2n   1Þ

                                       sin nx    1
                              We have        @  . Then by the Weierstrass M test the series is uniformly convergent for all x,in
                                        n 3    n 3
                           particular 0 @ x @  , and can be integrated term by term.  Thus
                                                           !
                                                                 1 ð
                                        ð         ð    X sin nx  X     sin nx
                                                     1
                                                                          dx
                                           f ðxÞ dx ¼    3   dx ¼      3
                                         0         0  n¼1  n     n¼1  0  n
                                                    1   cos n   1   1  1              1
                                                  1                              1
                                                  X                              X
                                                            ¼ 2          þ      ¼ 2
                                                       n        1  3   5
                                                ¼       4        4  þ  4  þ  4           4
                                                  n¼1                            n¼1  ð2n   1Þ
                     POWER SERIES
                                                      1                                        1
                                                     X                                         X
                                                           n
                     11.39. Prove that both the power series  a n x and the corresponding series of derivatives  na n x n 1
                                                     n¼0                                       n¼0
                           have the same radius of convergence.
                                                                n
                              Let R > 0be theradius of convergence of  a n x .Let 0 < jx 0 j < R. Then, as in Problem 11.33, we can
                                             1
                           choose N as that ja n j <  for n > N.
                                               n
                                            jx 0 j
                              Thus, the terms of the series  jna n x n 1 j¼   nja n jjxj n 1  can for n > N be made less than corresponding
                                             n 1
                           terms of the series   n  jxj  , which converges, by the ratio test, for jxj < jx 0 j < R.
                                              n
                                           jx 0 j
                              Hence,  na n x n 1  converges absolutely for all points x 0 (no matter how close jx 0 j is to R).
                                                   n
                              If, however, jxj > R, lim a n x 6¼ 0 and thus lim na n x n 1  6¼ 0, so that  na n x n 1  does not converge.
                                             n!1              n!1
   295   296   297   298   299   300   301   302   303   304   305