Page 304 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 304

CHAP. 11]                         INFINITE SERIES                               295


                           Adding,
                                                            n pþ2nþ2
                                                      1  ð 1Þ x
                                             2   2   X
                                   2 00  0
                                                        2  n!ðn þ pÞ!
                                  x y þ xy þðx   p Þy ¼  pþ2n
                                                     n¼0
                                                         ð 1Þ ½ p þð p þ 2nÞþð p þ 2nÞð p þ 2n   1ފx
                                                       1     n  2                          pþ2n
                                                       X
                                                                      2   n!ðn þ pÞ!
                                                     þ                 pþ2n
                                                       n¼0
                                                      1     n pþ2nþ2  1   n        pþ2n
                                                     X  ð 1Þ x      X  ð 1Þ ½4nðn þ pފx
                                                        2  n!ðn þ pÞ!    2   n!ðn þ pÞ!
                                                   ¼     pþ2n     þ       pþ2n
                                                     n¼0            n¼0
                                                                n 1 pþ2n              n  pþ2n
                                                      1                      1
                                                     X            x         X      ð 1Þ 4x
                                                             ð 1Þ
                                                        2    ðn   1Þ!ðn   1 þ pÞ!  2  ðn   1Þ!ðn þ p   1Þ!
                                                   ¼     pþ2n 2            þ    pþ2n
                                                     n¼1                    n¼1
                                                       1         n  pþ2n     1         n  pþ2n
                                                       X      ð 1Þ 4x       X      ð 1Þ 4x
                                                         2   ðn   1Þ!ðn þ p   1Þ!  2  ðn   1Þ!ðn þ p   1Þ!
                                                   ¼      pþ2n             þ    pþ2n
                                                       n¼1                   n¼1
                                                   ¼ 0
                                                                      n 1
                                                                 1
                                                                 X   z
                     11.47. Test for convergence the complex power series  3  n 1 .
                                                                    n   3
                                                                 n¼1

                                                   n     3              3
                                                   z     n   3 n 1     n
                                                                               jzj                jzj
                              Since lim     u nþ1               ¼ lim           ,the series converges for  < 1,

                                            ¼ lim    3  n     n 1         3  jzj¼
                                  n!1 u n   n!1 ðn þ 1Þ   3  z     n!1 3ðn þ 1Þ  3                 3

                           i.e., jzj < 3, and diverges for jzj > 3.
                                                                     n 1
                                                                 1         1
                                                                X   jzj    X  1
                              For jzj¼ 3, the series of absolute values is  ¼  ,sothat the series is absolutely
                                                                    3
                                                                   n   3 n 1  n 3
                                                                n¼1        n¼1
                           convergent and thus convergent for jzj¼ 3.
                              Thus, the series converges within and on the circle jzj¼ 3.
                                                    x
                     11.48. Assuming the power series for e holds for complex numbers, show that
                                                          ix
                                                          e ¼ cos x þ i sin x
                                                    z 2  z 3
                                           z
                                                    2!  3!
                              Letting z ¼ ix in e ¼ 1 þ z þ  þ  þ     ; we have
                                                                           !                !
                                                     3 3
                                                2 2
                                                i x  i x         x 2  x 4         x 3  x 5
                                      ix
                                                2!   3!           2!  4!           3!  5!
                                     e ¼ 1 þ ix þ  þ    þ      ¼ 1    þ         þ ix    þ
                                        ¼ cos x þ i sin x
                              Similarly, e  ix  ¼ cos x   i sin x.  The results are called Euler’s identities.
                                            1  1  1      1

                     11.49. Prove that lim 1 þ þ þ þ     þ   ln n  exists.
                                            2  3  4      n
                                    n!1
                              Letting f ðxÞ¼ 1=x in (1), Problem 11.11, we find
                                           1  1  1      1             1  1  1       1
                                                                           4
                                           2  þ þ þ     þ M  @ ln M @ 1 þ þ þ þ     þ  M   1
                                                                      2
                                                                        3
                                                 4
                                              3
                           from which we have on replacing M by n,
                                                   1      1  1  1     1
                                                     @ 1 þ þ þ þ     þ   ln n @ 1
                                                   n      2  3  4     n
                                                1  1  1     1
                           Thus, the sequence S n ¼ 1 þ þ þ þ     þ   ln n is bounded by 0 and 1.
                                                2  3  4     n
   299   300   301   302   303   304   305   306   307   308   309