Page 308 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 308

CHAP. 11]                         INFINITE SERIES                               299


                     11.65.  Use the comparison test to prove that
                                                                                             1
                               1                                          1    1             X 2
                               X    1                                    X  tan  n             n
                                  @                                               diverges,      converges.
                           ðaÞ       p  converges if p > 1 and diverges if p @ 1; ðbÞ    ðcÞ    n
                                    n                                         n                2
                               n¼1                                       n¼1                 n¼1
                     11.66.  Establish the results (b) and (c)ofthe quotient test, Page 267.
                     11.67.  Test for convergence:
                                    2
                              1            1 q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  1  1
                              X            X                 X   3 þ sin n   X
                                     ;         n tan ð1=n Þ;           ;        n sin ð1=nÞ:
                                ðln nÞ             1   3                           2
                                  n
                           ðaÞ     2   ðbÞ                ðcÞ         n   ðdÞ
                              n¼1          n¼1                n¼1  nð1 þ e Þ  n¼1
                           Ans.  (a)conv., (b)div.,  (c)div.,  (d)div.
                     11.68.  If  u n converges, where u n A 0for n > N, and if lim nu n exists, prove that lim nu n ¼ 0.
                                                                n!1                n!1
                                                  1
                                               1
                                              X
                     11.69.  (a)Test for convergence  .  (b) Does your answer to (a)contradict the statement about the p
                                                 n 1þ1=n
                                              n¼1
                                                     p
                           series made on Page 266 that  1=n converges for p > 1?
                           Ans.  (a)div.
                     INTEGRAL TEST
                                                                                         p
                                                1    2        1            1         X   n ffiffi   1
                                                                                     1
                                               X    n        X    1        X  n        e        X  ln n
                     11.70.  Test for convergence:  (a)  3  ;  ðbÞ  3 ;  ðcÞ  n  ;  ðdÞ  p ffiffiffi  ðeÞ  ;
                                                  2n   1                     2           n         n
                                               n¼1           n¼2  nðln nÞ  n¼1       n¼1        n¼2
                               1  lnðln nÞ
                              X  2
                                      :
                           ð f Þ
                                 n ln n
                              n¼10
                           Ans:  ðaÞ div.,  ðbÞ conv., ðcÞ conv.,  ðdÞ conv.,  ðeÞ div.,  ð f Þ div.
                                    1
                                    X   1
                     11.71.  Prove that    p , where p is a constant,  (a)converges if p > 1 and  (b)diverges if p @ 1.
                                    n¼2  nðln nÞ
                                    9  X  1  5
                                       1
                     11.72.  Prove that  <  < .
                                    8    n 3  4
                                       n¼1
                                                        1
                                                  X tan  n
                                                    e
                                                  1
                     11.73.  Investigate the convergence of  :
                                                     2
                                                    n þ 1
                                                  n¼1
                           Ans:  conv.
                                                                     2 3=2
                                      2 3=2
                                                                               2
                                                                 ffiffiffi
                     11.74.  (a)Prove that n  1  @  p ffiffiffi  p ffiffiffi  p ffiffiffi  p n @ n  þ n 1=2    .
                                      3   þ  3   1 þ  2 þ  3 þ     þ  3        3
                                                      p ffiffiffi  p ffiffiffi  p ffiffiffi  p ffiffiffiffiffiffiffiffi
                           (b)Use (a)to estimate the value of  1 þ  2 þ  3 þ     þ  100,giving the maximum error.
                                                                                     p ffiffiffiffiffi  p ffiffiffiffiffi  p ffiffiffiffiffiffiffiffi
                           (c) Show how the accuracy in (b)can be improved by estimating, for example,  10 þ  11 þ     þ  100
                                                p ffiffiffi  p ffiffiffi  p ffiffiffi
                           and adding on the value of  1 þ  2 þ     þ  9 computed to some desired degree of accuracy.
                           Ans:  ðbÞ 671:5   4:5
                     ALTERNATING SERIES
                                                     nþ1             n              nþ1
                                                1             1               1
                                               X             X                X       n
                     11.75.  Test for convergence:  (a)  ð 1Þ  ;  ðbÞ  ð 1Þ  ;  ðcÞ  ð 1Þ  ;
                                                                 2
                                                    2 n         n þ 2n þ 2       3n   1
                                               n¼1           n¼1              n¼1
                               1                1    n  p ffiffiffi
                              X     n   1 1    X  ð 1Þ  n
                                ð 1Þ sin  ;             :
                           ðdÞ              ðeÞ
                                        n          ln n
                              n¼1              n¼2
                           Ans. (a)conv.,  (b)conv.,  (c)div.,  (d)conv.,  (e)div.
   303   304   305   306   307   308   309   310   311   312   313