Page 310 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 310

CHAP. 11]                         INFINITE SERIES                               301

                                               1  1   4  1   4   7   2  2   5  2   5   8
                     11.88.  Test for convergence:  (a)  þ  þ  þ     ,  (b)  þ  þ    þ     .
                                               3  3   6  3   6   9   9  9   12  9   12   15
                           Ans.(a)div.,  (b)conv.
                     11.89.  If a; b, and d are positive numbers and b > a,prove that
                                                    a  aða þ dÞ  aða þ dÞða þ 2dÞ
                                                    b  þ  bðb þ dÞ  þ  bðb þ dÞðb þ 2dÞ  þ
                           converges if b   a > d, and diverges if b   a @ d.

                     SERIES OF FUNCTIONS
                     11.90.  Find the domain of convergence of the series:
                               1  n      1     n    n      1               1         n     1     nx
                               X  x      X  ð 1Þ ðx   1Þ   X    1         X   2 1   x      X    e
                           ðaÞ    3  ;  ðbÞ  n       ;  ðcÞ       2 n  ;  ðdÞ  n  1 þ x  ;  ðeÞ  2
                               n¼1  n    n¼1  2 ð3n   1Þ   n¼1  nð1 þ x Þ  n¼1             n¼1  n   n þ 1
                           Ans:  ðaÞ  1 @ x @ 1;  ðbÞ  1 < x @ 3;  ðcÞ all x 6¼ 0;  ðdÞ x > 0;  ðeÞ x @ 0
                                    1
                                    X
                                                    n
                     11.91.  Prove that  1   3   5     ð2n   1Þ x converges for  1 @ x < 1.
                                    n¼1  2   4   6    ð2nÞ
                     UNIFORM CONVERGENCE
                     11.92.  By use of the definition, investigate the uniform convergence of the series
                                                                  x
                                                         1
                                                         X
                                                         n¼1  ½1 þðn   1Þxн1 þ nxŠ

                                                                                                   1
                                                                                                      :
                                                                                                 1 þ nx
                            Hint: Resolve the nth term into partial fractions and show that the nth partial sum is S n ðxÞ¼ 1
                           Ans.  Not uniformly convergent in any interval which includes x ¼ 0; uniformly convergent in any other
                           interval.
                     11.93.  Work Problem 11.30 directly by first obtaining S n ðxÞ.
                     11.94.  Investigate by any method the convergence and uniform convergence of the series:
                                              2
                                 x
                              X    n     X  sin nx    X    x
                                          1
                                                       1
                              1
                                    ;            ;             ; x A 0:
                                 3          2   1
                           ðaÞ        ðbÞ    n     ðcÞ        n
                              n¼1        n¼1          n¼1  ð1 þ xÞ
                           Ans.  (a)conv. for jxj < 3; unif. conv. for jxj @ r < 3. (b) unif. conv. for all x.(c)conv. for x A 0; not
                           unif. conv. for x A 0, but unif. conv. for x A r > 0.
                                   1
                                   X sin nx
                     11.95.  If FðxÞ¼    ,prove that:
                                      n 3
                                   n¼1                                     X  cos nx
                                                                            1
                           (a) FðxÞ is continuous for all x,  (b) lim FðxÞ¼ 0;  ðcÞ F ðxÞ¼  is continous everywhere.
                                                                       0
                                                       x!0                     n 2
                                                                           n¼1

                                    ð   cos 2x  cos 4x  cos 6x
                     11.96.  Prove that    þ     þ      þ     dx ¼ 0.
                                    0  1   3  3   5  5   7
                                          1
                                         X  sin nx
                     11.97.  Prove that FðxÞ¼     has derivatives of all orders for any real x.
                                            sinh n
                                         n¼1
                                                    1
                     11.98.  Examine the sequence u n ðxÞ¼  ; n ¼ 1; 2; 3; .. . ; for uniform convergence.
                                                  1 þ x 2n
                                       ð  1  dx
                                                       1
                     11.99.  Prove that lim    n  ¼ 1   e .
                                    n!1
                                        0 ð1 þ x=nÞ
   305   306   307   308   309   310   311   312   313   314   315