Page 314 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 314

CHAP. 11]                         INFINITE SERIES                               305


                     11.139. Prove that the Ce ´ saro method of summability is regular.  [Hint: See Page 278.]
                                                        3
                                                   2
                                                                                       2
                     11.140. Prove that the series 1 þ 2x þ 3x þ 4x þ     þ nx n 1  þ      converges to 1=ð1   xÞ for jxj < 1.
                                  1                                  1
                                  X                                 X
                                                                         n
                     11.141. A series  a n is called Abel summable to S if S ¼ lim  a n x exists.  Prove that
                                  n¼0                           x!1   n¼0
                              1
                              X    n
                                ð 1Þ ðn þ 1Þ is Abel summable to 1/4 and
                           ðaÞ
                              n¼0
                                    n
                              1
                              X
                                               is Abel summable to 1/8.
                                ð 1Þ ðn þ 1Þðn þ 2Þ
                                       2
                           ðbÞ
                              n¼0
                                                         1
                                                 1  1
                                                X X
                     11.142. Prove that the double series    , where p is a constant, converges or diverges according as
                                                       2   2 p
                                                m¼1 n¼1  ðm þ n Þ
                           p > 1or p @ 1, respectively.
                                                                                     e
                                         e
                                      ð 1 x u   1  1   2!  3!      n 1 ðn   1Þ!   ð 1 x u
                                                                                n
                     11.143. (a)Prove that  du ¼     2  þ  3     4  þ       ð 1Þ  n  þð 1Þ n!  nþ1  du.
                                       x  u     x  x   x  x          x             x u
                                              ð  1 x u  1  1  2!  3!
                                                e
                           ðbÞ Use ðaÞ to prove that  du       2  þ  3     4  þ
                                              x  u      x  x  x   x
   309   310   311   312   313   314   315   316   317   318   319