Page 318 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 318

CHAP. 12]                      IMPROPER INTEGRALS                               309


                        2.  Quotient test for integrals with non-negative integrands.
                                                                                   ð           ð
                                                                                    1           1
                            (a)If f ðxÞ A 0 and gðxÞ A 0, and if lim  f ðxÞ  ¼ A 6¼ 0or 1, then  f ðxÞ dx and  gðxÞ dx
                                                                                    a           a
                                                          x!1 gðxÞ
                                either both converge or both diverge.
                                                ð                    ð
                                                 1                    1
                            (b)If A ¼ 0in(a)and   gðxÞ dx converges, then  f ðxÞ dx converges.
                                                 a                    a
                                                ð                    ð
                                                 1                    1
                            (c)If A ¼1 in (a) and  gðxÞ dx diverges, then  f ðxÞ dx diverges.
                                                 a                    a
                        This test is related to the comparison test and is often a very useful alternative to it. In particular,
                                   p
                     taking gðxÞ¼ 1=x ,we have from known facts about the p integral, the following theorem.
                                        p
                     Theorem 1.  Let lim x f ðxÞ¼ A.  Then
                                   x!1
                         ð
                          1
                      (i)   f ðxÞ dx converges if p > 1and A is finite
                          a
                         ð
                          1
                     (ii)   f ðxÞ dx diverges if p @ 1 and A 6¼ 0(A may be infinite).
                          a
                                        ð    2                         2
                                         1  x dx                      x     1
                                                                  2
                            EXAMPLE 1.            converges since lim x    ¼ .
                                            4
                                                                      4
                                         0 4x þ 25            x!1   4x þ 25  4
                                        ð
                                         1    xdx                        x
                            EXAMPLE 2.     p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi diverges since lim x   p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ 1.
                                             4
                                                                       4
                                                 2
                                                                           2
                                         0  x þ x þ 1          x!1    x þ x þ 1
                                Similar test can be devised using gðxÞ¼ e  tx .
                                                                       ð
                                                                        1
                        3. Series test for integrals with non-negative integrands.  f ðxÞ dx converges or diverges accord-
                            ing as  u n , where u n ¼ f ðnÞ,converges or diverges.  a
                                                           ð                                  ð
                                                            1                                  1
                        4. Absolute and conditional convergence.  f ðxÞ dx is called absolutely convergent if  j f ðxÞj dx
                                                                                               a
                                        ð                   a ð                     ð
                                         1                     1                     1
                            converges.  If  f ðxÞ dx converges but  j f ðxÞj dx diverges, then  f ðxÞ dx is called con-
                                         a                     a                     a
                            ditionally convergent.
                                  ð                      ð
                                   1                      1
                     Theorem 2.  If  j f ðxÞj dx converges, then  f ðxÞ dx converges. In words, an absolutely convergent
                                   a                      a
                     integral converges.
                                        ð
                                         1  cos x
                            EXAMPLE 1.         dx is absolutely convergent and thus convergent since
                                           2
                                         a x þ 1
                            ð            ð          ð
                             1            1  dx      1  dx
                                 cos x
                                      dx @       and        converges.
                               2
                                                        2
                                            2
                             0 x þ 1     0 x þ 1     0 x þ 1

                                                                             ð
                                         ð
                                          1  sin x                            1
                            EXAMPLE   2.       dx converges (see Problem 12.11), but    sin x      dx does not converge (see
                                         0  x                                 0     x
                                             ð
                                              1  sin x
                            Problem 12.12).  Thus,  dx is conditionally convergent.
                                              0  x
                        Any of the tests used for integrals with non-negative integrands can be used to test for absolute
                     convergence.
   313   314   315   316   317   318   319   320   321   322   323