Page 320 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 320

CHAP. 12]                      IMPROPER INTEGRALS                               311

















                                                           Fig. 12-2


                     SPECIAL IMPROPER INTEGRALS OF THE SECOND KIND
                            ð b  dx
                        1.         p  converges if p < 1 and diverges if p A 1.
                             a ðx   aÞ
                            ð b  dx
                        2.         p  converges if p < 1 and diverges if p A 1.
                             a ðb   xÞ
                        These can be called p integrals of the second kind. Note that when p @ 0 the integrals are proper.



                     CONVERGENCE TESTS FOR IMPROPER INTEGRALS OF THE SECOND KIND
                        The following tests are given for the case where f ðxÞ is unbounded only at x ¼ a in the interval
                     a @ x @ b. Similar tests are available if f ðxÞ is unbounded at x ¼ b or at x ¼ x 0 where a < x 0 < b.

                        1. Comparison test for integrals with non-negative integrands.
                                                                                ð  b
                            (a) Convergence. Let gðxÞ A 0 for a < x @ b, and suppose that  gðxÞ dx converges. Then if
                                                          ð b                    a
                                0 @ f ðxÞ @ gðxÞ for a < x @ b,  f ðxÞ dx also converges.
                                                           a
                                        1       1                      ð  5  dx
                            EXAMPLE.  p ffiffiffiffiffiffiffiffiffiffiffiffiffi < p ffiffiffiffiffiffiffiffiffiffiffi for x > 1.  Then since  p ffiffiffiffiffiffiffiffiffiffiffi converges ( p integral with a ¼ 1,
                                        4
                                       x   1   x   1                   1  x   1
                                 ð 5  dx
                               1
                            p ¼ ),  ffiffiffiffiffiffiffiffiffiffiffiffiffi also converges.
                               2   p  4
                                  1  x   1
                                                                                  b
                                                                                 ð
                            (b) Divergence.  Let gðxÞ A 0 for a < x @ b, and suppose that  gðxÞ dx diverges.  Then if
                                                      ð b                        a
                                f ðxÞ A gðxÞ for a < x @ b,  f ðxÞ dx also diverges.
                                                       a
                                        ln x     1                  ð 6  dx
                            EXAMPLE.        >       for x > 3. Then since   diverges ( p integral with a ¼ 3, p ¼ 4),
                                           4       4                       4
                                      ðx   3Þ  ðx   3Þ               3 ðx   3Þ
                             6  ln x
                            ð
                                    dx also diverges.
                                   4
                             3 ðx   3Þ
                        2. Quotient test for integrals with non-negative integrands.
                                                                                             ð b
                            (a)If f ðxÞ A 0 and gðxÞ A 0 for a < x @ b,and if lim  f ðxÞ  ¼ A 6¼ 0or 1, then  f ðxÞ dx and
                                 b
                                ð                                    x!a gðxÞ                a
                                  gðxÞ dx either both converge or both diverge.
                                 a
   315   316   317   318   319   320   321   322   323   324   325