Page 325 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 325

316                            IMPROPER INTEGRALS                         [CHAP. 12



                                                          a               s
                                                fsin atg¼  2  2  ; fcos atg¼  2  2
                                                        s þ a           s þ a
                     and recall that
                                                           00
                                             f ðsÞ¼  fFðtÞg fF ðtÞg þ 4 fFðtÞg ¼ 3 fsin tg
                        Using (b)we obtain
                                                                     3
                                                    2
                                                                   s þ 1
                                                   s f ðsÞ  s þ 4f ðsÞ¼  2  :
                     Solving for f ðsÞ yields
                                                  3          s      1     1      s
                                                                                    :
                                              2     2      2      2      2      2
                                       f ðsÞ¼            þ      ¼             þ
                                             ðs þ 4Þðs þ 1Þ  s þ 4  s þ 1  s þ 4  s þ 4
                     (Partial fractions were employed.)
                        Referring to the table of Laplace transforms, we see that this last expression may be written
                                                             1
                                                             2
                                                f ðsÞ¼  fsin tg   fsin 2tgþ  fcos 2tg
                     then using the linearity of the Laplace transform
                                                              1
                                                 f ðsÞ¼  fsin t   sin 2t þ cos 2tg:
                                                              2
                        We find that
                                                              1
                                                   FðtÞ¼ sin t   sin 2t þ cos 2t
                                                              2
                     satisfies the differential equation.

                     IMPROPER MULTIPLE INTEGRALS
                        The definitions and results for improper single integrals can be extended to improper multiple
                     integrals.





                                                     Solved Problems


                     IMPROPER INTEGRALS
                     12.1. Classify according to the type of improper integral.
                              ð  1  dx              ð 10  xdx         ð    1   cos x
                          (a)    p ffiffiffi           (c)               (e)         dx
                                 3                          2             x 2
                               1  xðx þ 1Þ           3 ðx   2Þ        0
                              ð                     ð      2
                                   dx                     x dx
                               1                     1
                          (b)                    (d)
                                                             2
                                                         4
                              0 1 þ tan x             1 x þ x þ 1
                          (a) Second kind (integrand is unbounded at x ¼ 0 and x ¼ 1).
                          (b) Third kind (integration limit is infinite and integrand is unbounded where tan x ¼ 1Þ.
                          (c)  This is a proper integral (integrand becomes unbounded at x ¼ 2, but this is outside the range of
                              integration 3 @ x @ 10).
                          (d) First kind (integration limits are infinite but integrand is bounded).
   320   321   322   323   324   325   326   327   328   329   330