Page 330 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 330

CHAP. 12]                      IMPROPER INTEGRALS                               321

                                              ð             ðnþ1Þ
                                               1         1 ð             1 ð
                                                         X               X    sin v
                                                  sin x           sin x
                                                                                  dv
                                                       dx ¼            dx ¼                           ð1Þ
                                                   x               x        0 v þ n
                                               0         n¼0  n          n¼0
                                  1       1
                           Now       A         for 0 @ v @  :  Hence,
                                v þ n   ðn þ 1Þ
                                                 ð                ð
                                                   sin v       1              2
                                                        dv A
                                                 0 v þ n    ðn þ 1Þ  9  sin vdv ¼  ðn þ 1Þ            ð2Þ
                                        2
                                   1
                                   X
                              Since         diverges, the series on the right of (1)diverges by the comparison test.  Hence,
                                     ðn þ 1Þ
                                   n¼0
                           ð
                            1

                             sin x
                                   dx diverges and the required result follows.
                           0     x
                     IMPROPER INTEGRALS OF THE SECOND KIND, CAUCHY PRINCIPAL VALUE
                                       ð 7  dx
                     12.13. (a) Prove that  ffiffiffiffiffiffiffiffiffiffiffi converges and  (b) find its value.
                                          p
                                          3
                                         1  x þ 1
                              The integrand is unbounded at x ¼ 1.  Then we define the integral as

                                             ð  7  dx            2=3 7
                                                                                3 2=3
                                          lim      ffiffiffiffiffiffiffiffiffiffiffi ¼ lim  ðx þ 1Þ       ¼ lim 6      ¼ 6
                                                  3 p          2=3              2
                                               1þ   x þ 1
                                           !0þ            !0þ        1þ    !0þ
                           This shows that the integral converges to 6.
                                           ð 5  dx
                     12.14. Determine whether        converges (a)in the usual sense, (b)in the Cauchy principal
                                                   3
                                            1 ðx   1Þ
                           value sense.
                           (a)By definition,
                                                  dx              dx             dx
                                             ð  5           ð 1   1        ð 5
                                                     3  ¼ lim        3  þ lim       3
                                                          1 !0þ          2 !0þ
                                               1 ðx   1Þ      1 ðx   1Þ     1þ  2 ðx   1Þ

                                                             1  1          1   1
                                                      ¼ lim        þ lim
                                                          1 !0þ 8  2  2    2 !0þ 2  2  32
                                                                 1         2
                              and since the limits do not exist, the integral does not converge in the usual sense.
                           (b)Since
                                              ð  1    dx  ð 5  dx        1  1   1   1     3
                                         lim                      ¼ lim
                                                     3  þ       3   !0þ 8     2  þ  2     32  ¼  32
                                         !0þ                               2   2
                                              1 ðx   1Þ  1þ  ðx   1Þ
                              the integral exists in the Cauchy principal value sense. The principal value is 3/32.
                     12.15. Investigate the convergence of:
                              ð 3   dx                ð 5    dx                  ð  =2  dx
                           (a)                     (c)                        (e)           ; n > 1:
                                 2  3   2=3             p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  1=n
                                                       1                          0
                               2 x ðx   8Þ                ð5   xÞðx   1Þ            ðcos xÞ
                                                             1
                             ð    sin x               ð 1  2 sin  x
                           (b      dx              (d)         dx
                              0 x 3                     1 1   x
                                                                      2=3
                                              1          1     1          1

                           (a)        2=3          ¼ lim               ¼ p ffiffiffiffiffi.  Hence, the integral converges by
                                          2  3   2=3  x!2þ x 2  2         3
                               lim ðx   2Þ

                              x!2þ                          x þ 2x þ 4   8 18
                                          x ðx   8Þ
                              Theorem 3(i), Page 312.
   325   326   327   328   329   330   331   332   333   334   335