Page 331 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 331

322                            IMPROPER INTEGRALS                         [CHAP. 12


                                   2 sin x
                          (b)  lim x    ¼ 1.  Hence, the integral diverges by Theorem 3(ii)on Page 312.
                                     x 3
                              x!0þ
                                             ð  3   dx      ð  5   dx
                          ðcÞ Write the integral as  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi þ  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi :
                                              1  ð5   xÞðx   1Þ  3  ð5   xÞðx   1Þ
                                                      1       1
                                              1=2
                                 Since lim ðx   1Þ    p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ ,the first integral converges.
                                                              2
                                      x!1þ
                                                  ð5   xÞðx   1Þ
                                                       1       1
                                 Since         1=2    p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ ,the second integral converges.
                                                               2
                                       lim ð5   xÞ
                                       x!5
                                                   ð5   xÞðx   1Þ
                                 Thus, the given integral converges.
                                        2 sin  1  x
                          (d)               ¼ 2  =2 .Hence, the integral diverges.
                               lim ð1   xÞ
                                        1   x
                              x!1
                              Another method:
                                    2 sin  1 x  2   =2  ð 1  dx
                                         A      , and        diverges.  Hence, the given integral diverges.
                                    1   x  1   x       1 1   x
                                                                   1=n
                                         1=n   1            =2   x
                                                 1=n        cos x
                          ðeÞ  lim ð =2   xÞ       ¼   lim          ¼ 1:  Hence the integral converges.
                              x!1=2                  x!1=2
                                            ðcos xÞ
                                                            1
                                                           ð
                     12.16. If m and n are real numbers, prove that  x m 1 ð1   xÞ n 1  dx (a) converges if m > 0 and n > 0
                                                            0
                          simultaneously and  (b) diverges otherwise.
                          (a) For m A 1 and n A 1 simultaneously, the integral converges, since the integrand is continuous in
                              0 @ x @ 1. Write the integral as
                                                ð 1=2             ð 1
                                                   x m 1 ð1   xÞ n 1  dx þ  x m 1 ð1   xÞ n 1  dx    ð1Þ
                                                 0                 1=2
                                 If 0 < m < 1 and 0 < n < 1, the first integral converges, since lim x 1 m    x m 1  ð1   xÞ n 1  ¼ 1, using
                              Theorem 3(i), Page 312, with p ¼ 1   m and a ¼ 0.  x!0þ
                                                                           1 n  m 1   n 1
                                 Similarly, the second integral converges since lim ð1   xÞ    x  ð1   xÞ  ¼ 1, using Theorem
                              4(i), Page 312, with p ¼ 1   n and b ¼ 1.  x!1
                                 Thus, the given integral converges if m > 0 and n > 0 simultaneously.
                          (b)If m @ 0, lim x   x m 1 ð1   xÞ n 1  ¼1.Hence, the first integral in (1)diverges, regardless of the value
                                     x!0þ
                              of n,by Theorem 3(ii), Page 312, with p ¼ 1 and a ¼ 0.
                                 Similarly, the second integral diverges if n @ 0 regardless of the value of m, and the required result
                              follows.
                                 Some interesting properties of the given integral, called the beta integral or beta function,are
                              considered in Chapter 15.

                                    ð    1  1
                     12.17. Prove that  sin  dx converges conditionally.
                                    0 x   x
                                                         ð
                                                          1  sin y
                              Letting x ¼ 1=y,the integral becomes  dy and the required result follows from Problem 12.12.
                                                          1=  y
                     IMPROPER INTEGRALS OF THE THIRD KIND
                                                    ð
                                                     1
                     12.18. If n is a real number, prove that  x n 1  x  dx (a) converges if n > 0 and (b) diverges if n @ 0.
                                                          e
                                                     0
   326   327   328   329   330   331   332   333   334   335   336