Page 328 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 328

CHAP. 12]                      IMPROPER INTEGRALS                               319

                              ð            ð            ð
                               1  1   cos x  1   cos x   1  1   cos x
                                                                 dx
                           ðbÞ      2  dx ¼     2   dx þ      2
                               0   x        0  x             x
                                  The first integral on the right converges [see Problem 12.1(e)].

                                          3=2 1   cos x
                                  Since lim x        ¼ 0, the second integral on the right converges by Theorem 1, Page 309,
                                               x 2
                                      x!1
                              with A ¼ 0 and p ¼ 3=2.
                                  Thus, the given integral converges.
                                                                    3
                                                 ð  1  e x     ð 1  x þ x 2
                     12.8. Test for convergence:  (a)  dx;  ðbÞ          dx:
                                                                    6
                                                   1 x           1 x þ 1
                                                                e
                                                              ð  1  y
                           (a)Let x ¼ y.  Then the integral becomes    dy.
                                                              1  y
                                       e  y   y                  ð  1   y        ð  1  y
                                                                                   e
                              Method 1:   @ e   for y @ 1. Then since  e  dy converges,  dy converges; hence the
                                        y                         1              1  y
                              given integral converges.

                                            2 e  y       y
                              Method 2:  lim y   ¼ lim ye  ¼ 0.  Then the given integral converges by Theorem 1, Page
                                              y
                                       y!1         y!1
                              309, with A ¼ 0 and p ¼ 2.
                                                                   3
                                                       3
                                                  ð  0  x þ x 2  ð 1  x þ x 2
                           (b)Write the given integral as   dx þ        dx.  Letting x ¼ y in the first integral, it
                                                                   6
                                                       6
                                                    1 x þ 1     0 x þ 1
                                                                  !
                                         y   y            3 y   y
                                      ð   3  2               3   2
                                       1
                                       0 y þ 1        y!1    y þ 1
                              becomes     6   dy.Since lim y  6    ¼ 1, this integral converges.
                                                 !
                                             3
                                                 2
                                          3 x þ x
                                  Since lim x      ¼ 1, the second integral converges.
                                             6
                                            x þ 1
                                      x!1
                                  Thus the given integral converges.
                     ABSOLUTE AND CONDITIONAL CONVERGENCE FOR IMPROPER INTEGRALS OF THE
                     FIRST KIND
                                   ð                  ð
                                    1                  1
                     12.9. Prove that  f ðxÞ dx converges if  j f ðxÞj dx converges, i.e., an absolutely convergent integral is
                                    a                  a
                           convergent.
                              We have  j f ðxÞj @ f ðxÞ @ j f ðxÞj, i.e., 0 @ f ðxÞþj f ðxÞj @ 2j f ðxÞj.  Then
                                                       b                 b
                                                      ð                 ð
                                                  0 @   ½ f ðxÞþj f ðxÞjŠ dx @ 2  j f ðxÞj dx
                                                       a                a
                                ð                             ð
                                 1                             1
                              If   j f ðxÞj dx converges, it follows that  ½ f ðxÞþj f ðxÞjŠ dx converges.  Hence, by subtracting
                                 a                            a
                           ð                              ð
                            1                             1
                             j f ðxÞj dx, which converges, we see that  f ðxÞ dx converges.
                           a                              a
                                    ð
                                     1  cos x
                     12.10. Prove that   2  dx converges.
                                     1  x
                           Method 1:
                                      1                                         1  dx
                                                                               ð
                                   @    for x A 1.  Then by the comparison test, since  converges, it follows that
                                cos x

                               x     x                                          1 x
                                 2    2                                           2
                           ð                   ð
                            1                   1  cos x

                             cos x
                                   dx converges, i.e.,  dx converges absolutely, and so converges by Problem 12.9.
                                x 2               x 2
                           1                    1
   323   324   325   326   327   328   329   330   331   332   333