Page 334 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 334

CHAP. 12]                      IMPROPER INTEGRALS                               325


                     EVALUATION OF DEFINITE INTEGRALS
                                    ð  =2
                     12.23. Prove that  ln sin xdx ¼   ln 2.
                                     0             2
                              The given integral converges [Problem 12.42( f )]. Letting x ¼  =2   y,
                                                 ð  =2       ð  =2        ð   =2
                                                                             ln cos xdx
                                              I ¼   ln sin xdx ¼  ln cos ydy ¼
                                                  0           0           0
                           Then
                                               ð  =2               ð  =2    sin 2x
                                                                       ln     dx
                                           2I ¼   ðln sin x þ ln cos xÞ dx ¼  2
                                                0                   0

                                               ð  =2        ð   =2    ð   =2
                                                                                    ln 2
                                             ¼    ln sin 2xdx    ln 2 dx ¼  ln sin 2xdx    2          ð1Þ
                                                0            0         0
                           Letting 2x ¼ v,
                                        ð   =2        ð             ð  =2      ð
                                                     1           1
                                                                                  ln sin vdv
                                           ln sin 2xdx ¼  ln sin vdv ¼  ln sin vdv þ
                                         0           2 0         2  0            =2
                                                     1
                                                   ¼ ðI þ IÞ¼ I  (letting v ¼     u in the last integral)
                                                     2

                                                                ln 2.
                                                    2          2
                              Hence, (1)becomes 2I ¼ I    ln 2 or I ¼
                                    ð                2
                     12.24. Prove that  x ln sin xdx ¼   ln 2.
                                     0              2
                              Let x ¼     y.  Then, using the results in the preceding problem,
                                              ð           ð               ð
                                                                           ð    xÞ ln sin xdx
                                          J ¼   x ln sin xdx ¼  ð    uÞ ln sin udu ¼
                                              0            0               0
                                                           ð          ð
                                                        ¼    ln sin xdx    x ln sin xdx
                                                            0          0
                                                            2
                                                        ¼   ln 2   J
                                       2
                                       ln 2:
                              or J ¼
                                      2
                                                 dx
                                             ð
                                              1
                                                     is uniformly convergent for   A 1.
                     12.25. (a) Prove that  ð Þ¼  2
                                             0 x þ
                                                              ð  1  dx
                           ðbÞ Show that  ð Þ¼ p . ðcÞ Evaluate         :
                                             2                    2    2
                                               ffiffiffi
                                                               0 ðx þ 1Þ
                                        ð             ð  =2
                                              dx            2n
                                         1                         1   3   5    ð2n   1Þ
                           ðdÞ Prove that                                          :
                                            2    nþ1  ¼  cos   d  ¼               2
                                                       0             2   4   6    ð2nÞ
                                         0 ðx þ 1Þ
                                                                         1       1               ð 1  dx
                           (a) The result follows from the Weierestrass test, since  @  for a A 1 and
                                                                                                    2
                                                                                2
                                                                        2
                                                                       x þ     x þ 1             0 x þ 1
                              converges.
                                       ð  b  dx     1         b     1
                               ð Þ¼ lim       ¼ lim p tan  1 x    ¼ lim p tan  1 b ffiffiffi ¼ p :
                           ðbÞ            2         ffiffiffi   p ffiffiffi      ffiffiffi  p      ffiffiffi
                                   b!1 0 x þ    b!1             0  b!1         2
   329   330   331   332   333   334   335   336   337   338   339