Page 335 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 335

326                            IMPROPER INTEGRALS                         [CHAP. 12


                                         dx
                                      ð
                                      1
                          (c)  From (b),     ¼ p ffiffiffi.  Differentiating both sides with respect to  ,we have
                                         2
                                      0 x þ    2
                                               ð                ð
                                                1  @   1         1   dx          3=2

                                                      2
                                                           dx ¼
                                                                          ¼
                                                                    2
                                                0 @  x þ         0 ðx þ  Þ 2  4
                                                                      ð
                                                                       1  dx
                              the result being justified by Theorem 8, Page 314, since  is uniformly convergent for   A 1
                                                                          2   2
                                                                      0 ðx þ  Þ
                                                         ð
                                        1        1        1  dx
                               because      @         and         converges .
                                       2   2    2   2        2   2
                                     ðx þ  Þ   ðx þ 1Þ    0 ðx þ 1Þ              ð
                                                                                  1   dx
                                 Taking the limit as   ! 1þ,using Theorem 6, Page 314, we find  ¼ .
                                                                                     2   2  4
                                                                                  0 ðx þ 1Þ
                                                       dx
                                                   ð
                                                    1
                          (d)Differentiating both sides of  2  ¼     1=2  n times, we find
                                                    0 x þ    2
                                                ð
                                                      dx        1   3    5      2n   1     ð2nþ1Þ=2
                                                 1
                                                    2           2   2    2        2   2
                                    ð 1Þð 2Þ    ð nÞ     nþ1  ¼
                                                 0 ðx þ  Þ
                              where justification proceeds as in part (c).  Letting   ! 1þ,we find
                                           ð
                                            1   dx     1   3   5     ð2n   1Þ    1   3   5     ð2n   1Þ
                                                             n
                                               2   nþ1  ¼    2 n!    2  ¼             2
                                            0 ðx þ 1Þ                     2   4   6     ð2nÞ
                                                           ð  =2
                                                                2n
                          Substituting x ¼ tan  ,the integral becomes  cos   d  and the required result is obtained.
                                                           0
                                                        2
                                    ð 1  ax    e  bx  1  b þ r 2
                                      e
                     12.26. Prove that          dx ¼  ln  2  2  where a; b > 0.
                                    0   x sec rx    2  a þ r
                              From Problem 12.22 and Theorem 7, Page 314, we have
                                            ð    ð b              ð b    ð
                                             1        x                1    x
                                                   e  cos rx d  dx ¼     e   cos rx dx d
                                             x¼0   ¼a               ¼a  x¼0
                          or
                                                   ð     x      b   ð b
                                                    1  e  cos rx
                                                                 dx ¼        d
                                                                         2
                                                   x¼0    x      ¼a   ¼a   þ r 2
                                                                        2
                                                        e
                                                     ð  1  ax    e  bx  1  b þ r 2
                          i.e.,                                 dx ¼  ln  2  2
                                                      0  x sec rx   2  a þ r
                                    ð
                                    1     1   cos x        1
                                                                   2
                     12.27. Prove that  e   x  2  dx ¼ tan  1     lnð  þ 1Þ,  > 0.
                                    0        x                2
                              By Problem 12.22 and Theorem 7, Page 314, we have
                                               r  1                1  r
                                               ð   ð              ð   ð
                                                    e   x  cos rx dx dr ¼  e   x  cos rx dr dx
                                               0  0                0  0
                                                   ð             ð r
                                                    1    x sin rx    a       1 r
                          or                         e       dx ¼  2   2  ¼ tan
                                                   0      x       0   þ r
                              Integrating again with respect to r from 0 to r yields
                                          ð                ð r
                                           1    x 1   cos rx    1 r        1 r     2  2
                                            e      2   dx ¼  tan   dr ¼ r tan     lnð  þ r Þ
                                           0      x         0                  2
                          using integration by parts. The required result follows on letting r ¼ 1.
   330   331   332   333   334   335   336   337   338   339   340