Page 340 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 340

CHAP. 12]                      IMPROPER INTEGRALS                               331

                                                                                               sin 2x
                                                                                            ð
                                                                                             1
                     12.40. Test for convergence, indicating absolute or conditional convergence where possible:  (a)  3  dx;
                                                                                             0 x þ 1
                             ð                                          ð               ð
                              1     2                                    1  cos x        1  x sin x
                           (b)   e  ax  cos bx dx, where a; b are positive constants; (c)  p ffiffiffiffiffiffiffiffiffiffiffiffiffi dx;  ðdÞ  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi dx;
                                                                             2
                                                                                             2
                                                                         0  x þ 1        0  x þ a 2
                               1
                             ð
                              1  cos x
                           (e)       dx.
                              0 cosh x
                           Ans.  (a) abs. conv.,  (b) abs. conv.,  (c)cond. conv.,  (d)div.,  (e) abs. conv.
                     12.41. Prove the quotient tests (b) and (c)on Page 309.
                     IMPROPER INTEGRALS OF THE SECOND KIND
                     12.42. Test for convergence:
                              ð 1   dx               ð 2  ln x           ð 3  x 2           ð 1 dx
                                                        ffiffiffiffiffiffiffiffiffiffiffiffiffi dx        dx
                                     p ffiffiffiffiffiffiffiffiffiffiffiffiffi  p
                           ðaÞ            2      ðdÞ   3    3        ðgÞ       2         ð jÞ  x
                               0 ðx þ 1Þ 1   x       1  8   x            0 ð3   xÞ           0 x
                               1  cos x              1   dx                 e  cos x
                              ð                     ð                   ð  =2  x
                                    dx                                            dx
                           ðbÞ    2              ðeÞ  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  ðhÞ
                               0 x                   0  lnð1=xÞ          0    x
                                                                          s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                    1
                              ð  1  tan  x           ð  =2              ð  1   2 2
                                e                                           1   k x
                                     dx                 ln sin xdx                dx; jkj < 1
                           ðcÞ    x              ð f Þ                ðiÞ       2
                                1                    0                   0  1   x
                           Ans.  (a)conv., (b)div.,  (c)div., (d)conv., (e)conv., ( f Þ conv., (g)div., (h)div., (i)conv.,
                           ( jÞ conv.
                                      ð 5  dx
                     12.43. (a)Prove that   diverges in the usual sense but converges in the Cauchy principal value senses.
                                       0 4   x
                           (b)Find the Cauchy principal value of the integral in (a) and give a geometric interpretation.
                           Ans.  (b)ln 4
                     12.44. Test for convergence, indicating absolute or conditional convergence where possible:
                              ð 1            ð 1  1          ð 1  1
                                                    1
                                                                     1
                                   1
                                cos  dx;        cos   dx;        cos   dx:
                           ðaÞ     x      ðbÞ      x      ðcÞ   2   x
                               0              0 x             0 x
                           Ans.  (a) abs. conv.,  (b)cond. conv.,  (c)div.
                                    4
                                                          p
                                   ð       1      1     32 2 ffiffiffi
                                        2
                     12.45. Prove that  3x sin   x cos  dx ¼  3  .
                                    0      x      x
                     IMPROPER INTEGRALS OF THE THIRD KIND
                                               ð              ð     x          ð      x
                                               1               1   e  dx        1    e  dx
                     12.46. Test for convergence:  (a)  e  x  ln xdx;  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ;  .
                                                                p
                                                           ðbÞ
                                                                                 p
                                                                            ðcÞ
                                                                                  3  ffiffiffi
                                               0               0  x lnðx þ 1Þ   0  x ð3 þ 2 sin xÞ
                           Ans.  (a)conv., (b)div.,  (c)conv.
                                               ð              ð    x
                                               1   dx         1   e dx
                     12.47. Test for convergence:  (a)  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ;  ðbÞ  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ; a > 0.
                                                 3  4  2
                                               0  x þ x       0  sinh ðaxÞ
                           Ans.  (a)conv., (b)conv. if a > 2, div. if 0 < a @ 2.
                                   ð
                                    1
                     12.48. Prove that  sinh ðaxÞ  dx converges if 0 @ jaj <  and diverges if jaj @  .
                                    0 sinh ð xÞ
                     12.49. Test for convergence, indicating absolute or conditional convergence where possible:
   335   336   337   338   339   340   341   342   343   344   345