Page 341 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 341

332                            IMPROPER INTEGRALS                         [CHAP. 12


                              ð            ð    p ffiffiffi
                               1  sin x     1  sin  x
                                  ffiffiffi dx;         ffiffiffi dx:  Ans:  ðaÞ cond. conv.,  ðbÞ abs. conv.
                                 p               p
                          ðaÞ           ðbÞ
                              0   x         0 sinh  x
                     UNIFORM CONVERGENCE OF IMPROPER INTEGRALS
                                             cos  x
                                           ð
                                           1
                                           0 1 þ x
                     12.50. (a)Prove that  ð Þ¼  2  dx is uniformly convergent for all  .
                          (b)Prove that  ð Þ is continuous for all  .  (c)Find lim  ð Þ:  Ans.  (c)  =2:
                                                                   !0
                                   ð
                                    1                          2
                                                          2
                                     Fðx; Þ dx, where Fðx; Þ¼   xe   x  .  (a) Show that  ð Þ is not continuous at   ¼ 0, i.e.,
                     12.51. Let  ð Þ¼
                                    0
                             ð           ð
                              1           1
                           lim             lim Fðx; Þ dx.  (b) Explain the result in (a).
                           !0  0  Fðx; Þ dx 6¼  0   !0
                                                    2
                     12.52. Work Problem 12.51 if Fðx; Þ¼   xe   x .
                     12.53. If FðxÞ is bounded and continuous for  1 < x < 1 and
                                                              1  ð 1  yFð Þ d
                                                      Vðx; yÞ¼             2
                                                                   2
                                                                 1 y þð    xÞ
                          prove that lim Vðx; yÞ¼ FðxÞ.
                                   y!0
                     12.54. Prove (a) Theorem 7 and (b) Theorem 8 on Page 314.
                     12.55. Prove the Weierstrass M test for uniform convergence of integrals.
                                    ð                   ð
                                     1                   1
                     12.56. Prove that if  FðxÞ dx converges, then  e   x  FðxÞ dx converges uniformly for   A 0.
                                     0                   0
                                            ð
                                            1   ax sin x                                      1
                                              e      dx converges uniformly for a A 0,     tan  a,
                     12.57. Prove that ðaÞ  ðaÞ¼                               ðbÞ  ðaÞ¼
                                            0     x                                    2
                             ð
                              1  sin x
                          (c)      dx ¼  (compare Problems 12.27 through 12.29).
                              0  x     2
                     12.58. State the definition of uniform convergence for improper integrals of the second kind.
                     12.59. State and prove a theorem corresponding to Theorem 8, Page 314, if a is a differentiable function of  .
                     EVALUATION OF DEFINITE INTEGRALS
                        Establish each of the following results. Justify all steps in each case.
                          ð 1  ax    e  bx
                             e
                     12.60.          dx ¼ lnðb=aÞ;  a; b > 0
                           0    x
                             e
                          ð 1  ax    e  bx
                                             1
                                                      1
                     12.61.          dx ¼ tan ðb=rÞ  tan ða=rÞ;  a; b; r > 0
                           0  x csc rx
                              sin rx
                          ð
                           1
                                              r
                     12.62.              ð1   e Þ;  r A 0
                                  2  dx ¼  2
                           0 xð1 þ x Þ
                             1   cos rx
                          ð
                           1
                     12.63.         dx ¼  jrj
                                x 2      2
                           0
                          ð
                             x sin rx     ar
                           1
                     12.64.        dx ¼  e  ;  a; r A 0
                              2
                           0 a þ x 2   2
   336   337   338   339   340   341   342   343   344   345   346